

Dr. Jürgen Koslowski

Algebraic Automata Theory Sheet 1, 2017-10-27

Exercise 1 [10 POINTS]

The concept of a monad can be formulated in any 2-category \mathscr{C} , where the hom-functor lands in *cat* thather than *set*, *i.e.*, $\mathscr{C}^{\text{op}} \times \mathscr{C} \xrightarrow{\text{hom}} cat$: one considers a 1-cell $C \xrightarrow{t} C$ together with 2-cells

subject to the ususal associativity and unit conditions.

Identify the monads in the 2-category spn of spans:

- objects are sets;
- 1-cells $A \xrightarrow{\$} B$ are spans of functions $A \xleftarrow{\$_0} S \xrightarrow{\$_1} B$, generalizing directed graphs, which satisfy A = B (alternatively, spans from A to B may be thought of as **set** valued $A \times B$ matrices);
- 2-cells from $A \xrightarrow{S} B$ to $A \xrightarrow{T} B$ are functions $S \xrightarrow{f} T$ making the two obvious triangles commute.

Exercise 2 [10 POINTS]

Identify the left adjoint 1-cells in the category spn (see above).

Exercise 3 [15 Points]

Describe a monad on the category set such that the EM-algebras are (abelian) groups.

due on Thursday, 2017-11-02, 13:15,