

Dr. Jürgen Koslowski

Algebraic Automata Theory Sheet 1, 2017-11-02

Exercise 1 [10 POINTS]

Prove Theorem 1.0.10: cat (as well as Cat) has the middle interchange propert, *i.e.*, in the following situation

the two possible composites agree:

Exercise 2 [12 POINTS]

- (a) Show that every adjunction $F \dashv U$ with $\mathscr{A} \xrightarrow{F} \mathscr{B}$ and $\mathscr{B} \xrightarrow{U} \mathscr{A}$ induces a monad on \mathscr{A} with functor T = FU and the same unit as the unit of the adjunction.
- (b) Show that under the hypotheses of (a) there also is a co-monad on \mathscr{B} with functor S = UF and the same co-unit as the co-unit of the adjunction.
- (c) Illustrate the above in case of pre-ordered sets $\mathscr{A} = \langle A, \sqsubseteq \rangle$ and $\mathscr{B} = \langle B, \leq \rangle$, and orderpreserving mas $A \xrightarrow{f} B$ resp. $B \xrightarrow{u} A$. Identify the corresponding categories of EM-lgebras resp. EM-co-algebras.

Exercise 3 [15 POINTS]

Given a monad $\mathbf{T} = \langle T, \eta, \mu \rangle$ on a category \mathscr{C} , the *Kleisli-category* $\mathscr{C}_{\mathbf{T}}$ has the same objects as \mathscr{C} , while the hom-sets are given by

$$\langle A, B \rangle \mathscr{C}_{T} = \langle A, BT \rangle \mathscr{C}$$

The composition of the \mathscr{C} -morphisms $A \xrightarrow{f} BT$ and $B \xrightarrow{g} CT$ in \mathscr{C}_T is defined by

$$\langle A \xrightarrow{f} BT, B \xrightarrow{g} CT \rangle \mapsto \langle A \xrightarrow{f} BT \xrightarrow{gT} CTT \xrightarrow{C\mu} CT$$

- (a) Compare \mathscr{C}_T with the full subcategory of \mathscr{C}^T spanned by the free algebras over \mathscr{C} -objects.
- (b) Identify the Kleisli-category for the power-set monad.

due on Thursday, 2017-11-09, 13:15,