

Algebraic Automata Theory Sheet 1, 2017-11-09

Exercise 1 [10 POINTS]

Analyse the following polarities in rel when B = 1.

Turn them into adjunctions between the power-sets $A\mathbb{P}$ and $(C\mathbb{P})^{\text{op}}$. What happens, if the relation $A \xrightarrow{T} C$ is left-adjoint, *i.e.*, a function $A \xrightarrow{h} C$?

Exercise 2 [12 POINTS]

Show in detail that the two characterizations of adjunctions $F \dashv G$ in **Cat** are equivalent:

(a) There exist natural transformations $\mathscr{A} \xrightarrow{\eta} FG$ and $GF \xrightarrow{\epsilon} \mathscr{B}$ subject to

(b) There exitst a natural isomorphism

$$\mathscr{A}^{\mathrm{op}} \times \mathscr{B} \underbrace{ \downarrow \iota }_{[-, -G]} set$$

Exercise 3 [15 POINTS]

Australian "mate calculus": consider a 2-category \mathcal{B} , where the 1-cells are denoted by arrows of the form \longrightarrow , while the left-adjoint 1-cells or *maps* are denoted by arrows of the form \longrightarrow .

Prove that there is a bijective correspondence between 2-cells of the following types:

where $f \dashv f'$ and $g \dashv g'$.

due on Thursday, 2017-11-16, 13:15,