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0 0 OVERVIEW: THE ARENA OF FORMAL LANGUAGES

0 Overview: the arena of formal languages
S:over

0.0 Rat and Rec : two classes of subsets of monoids via closures
SS:ratrec

We consider three operations, initially on sets:

. (−)∗ , the formation of free monoids as sets of finite lists;

. P , the formation of power-sets;

. F , the formation of the set of finite subsets.

Formal languages over an alphabet X are subsets of X∗ , i.e., elements of X∗P , which of course
contains X∗F , the set of finite formal languages over X . Instead of free monoids X∗ one can
form these powersets for arbitrary monoids M . Both MP and MF inherit a monoid structure
from M , the latter being a sub-monoid of the former. We think of them as fibres over the monoid
M .

[Diagram]

To obtain interesting submonoids of MP containing MF , one can “vertically” close the
latter under certain operations. We will be mainly interested in the subset MRat of rational
subsets of M , which is closed under

. finite unions (just like MF );

. concatenation (just like MF , hence one obtains a submonoid);

. the Kleene star (a special infinite union).

Hence rational sets may be thought of as describable by rational expressions (which coincide with
the “regular expressions” known from TI1). The class of rational subsets of monoids will turn out
to be automatically closed under direct and inverse homomorphic images.

An á priori unrelated subclass MRec ⊆ MP of recognizable sets is obtained by unioning
the inverse images of NP = NF for all homomorphisms M f N , where N is a finite monoid.
Compared to the construction of MRat by fibre-wise “vertical” closures, MRec may be thought
of as a “horizontal” closure.

It may not be entirely obvious from the definition that the class of recognizable subsets is
closed under finite unions and intersections as well as under direct images, but for recognizable
languages, i.e., recognizable subsets of finitely generated free monoids, this is an easy consequence
of the following observation, which also justifies the term “recognizable”.

P:regular 0.0.00 Proposition. The class of recognizable languages ist the class of languages that can be
recognized by a finite automaton.
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0.0 Rat and Rec : two classes of subsets of monoids via closures 1

Proof. Suppose L ⊆ X∗ is the inverse image of U ⊆ N under X∗ h N with N finite. Define
a complete deterministic automaton A = 〈N, e,A, δ〉 , where e ∈ N is the neutral element, and
for each letter x ∈ X , the transition function N xδ N is given by right-multiplication with
xh ∈ N . It is clear that Uh−1 = L = L(A) .

Conversely, start with a complete deterministic automaton A = 〈Q, qo, F, δ〉 , and define N

to be the submonoid of the monoid of all endo-functions Q Q generated by the transition
functions xδ , x ∈ X . Then all those elements of N that map q0 into F form the subset
U whose inverse image under uniquely determined extension X∗ δ̄ N of δ to a monoid
homomorphism.

Hence finite monoids turn out to provide an alternative mechanism to recognizing rational
languages.

E:matrix 0.0.01 Example. Consider the rational language {a, b}∗{a} ⊆ {a, b}∗ and the following monoid

N =

{(
1 0
0 1

)
,

(
0 1
0 1

)
,

(
1 0
1 0

)}
The homomorphism induced by

a 7→
(

0 1
0 1

)
and b 7→

(
1 0
1 0

)
recognizes L as the inverse image of the second matrix. C

Notice also that the minimal automaton of a language L ⊆ X∗ induces a minimal monoid
that recognizes L , the so-called syntactic monoid, which we will study in more detail below.

Clearly, every finite monoids arise as the syntactic monoid of some recognizable language.

A somewhat surprising result connects the classes of rational and of recognizable sets:

T:Kleene 0.0.02 Theorem. (Kleene) Every finite set X satisfies X∗Rat = X∗Rec .

C:K-comp 0.0.03 Corollary. For every finite set X , the set X∗Rat of recognizable languages is closed
under complementation.

Hence adding a complementation operation (−)c to the signature of rational expressions
does not change the class of rational languages. (Á priori it is not clear, if the rational subsets of
monoids that are non-finetely generated freely can change under this extension!)

In the 1960’s subclasses of rational languages were intensely studied, which resulted from
certain constraints on the allowed rational expressions, the so-called “star-free” languages that
do not require the Kleene star for their description forming a prime example. Schützenberger
managed to characterize this particular class of rational languages in terms of their recognizing
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2 0 OVERVIEW: THE ARENA OF FORMAL LANGUAGES

syntactic monoids: they are aperiodic. Since then a large number of results in this vein have been
obtained.

On a more gneral level, Eilenberg managed to relate so-called varieties of finite monoids, i.e.,
classes of finite monoids closed under homomorphic images (H), sub-monoids (S) and under finite
products (F), with nice subclasses of recognizable languages, also called “varieties”.

However, the efficient specification of varietes of finite monoids remained elusive. While
varieties of unconstrained algebras, i.e., classes closed under (H), (S) and not necessarily finite
products (P) had already been characterized by means of classes of “equations” by Birkhoff
in 1935, in general this fails for varieties of finite monoids (or other algebras). Only in 1980
Reiterman used profinite methods to provide a characterization in this case as well.

0.1 The interplay of (−)∗ and P , resp. F
SS:inter

The operators (−)∗ as well as P and F are easily seen to be functors on set . While for A f B

the function A∗ f∗ B∗ simply applies f to every symbol of a word w ∈ A∗ , and in particular
preserves the empty word, AP fP BP maps U ⊆ A to its f -image { b ∈ B : ∃a ∈ A. af = b } ,
which we denote by Uf∃ . The case of F is analogous.

In addition, all three functors carry rather canonical natural transformations that give rise to
monads, see Appendix.

set

set

idset (−)∗ (−)∗∗
η

µ
,

set

set

idset P PP
η

µ
,

set

set

idset F FF
η

µ

The list monad
SSS:fmon

Here the unit A Aη A∗ maps letters in A to singleton words of length 1, while the multiplication
A∗∗ Aµ A∗ concatenates a list of words to a single word. It is straightforward to check that
these families of functions indeed yield natural transformations η and µ respetively, and that µ
is associative, while η is a two-sided unit for µ .

P:EMmonoids 0.1.00 Proposition. The EM-algebras for the free monoid monad bijectively correspond to
classical monoids, while the EM-homomorphisms are precisely the monoid homomorphisms.

0.1.01 Corollary. Every monoid is a quotient of a free monoid.

The power-set monad
SSS:pow

Here the unit X Xη XP maps elements x ∈ X to singleton subsets {x} ⊆ X , while the
multiplication XPP Xµ XP forms the union of a set of subsets of X , resulting in a subset of
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0.1 The interplay of (−)∗ and P , resp. F 3

A . Again, the proof that these yield natural transformations is easy, just as the confirmation of
the monad axioms.

However, for the power-set monad it may harder to identify the EM-algebras as familiar
algebras. The stucture map XP

⊔
X satisfies

X XP

X

X{−}

idX

⊔
and

XPP XP

XP X

⊔
P

⋃
X

⊔
⊔

These suggest that
⊔

might be some kind of supremum operation. Indeed,
⊔

induces a canonical
partial ordering on X via

x v y iff {x, y}
⊔

= y (0.1-00) EQ:pord

Reflexivity and anti-symmetry are immediately clear. If x v y and y v z , then

{x, z}
⊔

=
{
x, {y, z}

⊔}⊔
=
{
{x}

⊔
, {y, z}

⊔}⊔
=
({
{x}, {y, z}

}⊔
P
)⊔

=
({
{x}, {y, z}

}⋃
X

)⊔
= {x, y, z}

⊔
=
({
{x, y}, {z}

}⋃
X

)⊔
=
({
{x, y}, {z}

}⊔
P
)⊔

=
{
{x, y}

⊔
, {z}

⊔}⊔
=
{
{x, y}

⊔
, z
}⊔

= {y, z}
⊔

= z

This establishes transitivity. It remains to show that A
⊔

is indeed a supremum of A ⊆ X with
respect to v . For a ∈ A we get{

a,A
⊔}⊔

=
{
{a}

⊔
, A
⊔}⊔

=
({
{a}, A

}⊔
P
)⊔

= ({a} ∪A)
⊔

= A
⊔

This shows that A
⊔

is indeed an upper bound for A . Given another upper bound y ∈ X of
A , i.e., {a, y}

⊔
= y for all a ∈ A , we obtain{

A
⊔
, y
}⊔

=
(
{A, {y}}

⊔
P
)⊔

= (A ∪ {y})
⊔

=
(
{{a, y} : a ∈ A }

⊔
P
)⊔

=
{
{a, y}

⊔
: a ∈ A

}⊔
= { y : a ∈ A }

⊔
= {y}

⊔
= y

This establishes A
⊔
v y , hence A

⊔
is indeed the least upper bound, or supremum, of A .

Hence the EM-algebras for the power-set monad are those posets where every subset has
a supremum, and hence also an infimum, i.e., complete lattices. However, the corresponding
morphisms are functions that only have to preserve suprema, hence one calls these EM-algebras⊔
-semi-lattices, while the corresponding category is denoted by

⊔
-slat . Preservation of suprema

automatically makes the morphisms automatically monotone.

The power-sets now can be identified as the “free
⊔
-semi-lattices”, and every

⊔
-semi-lattice

is a quotient of a free one.
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4 0 OVERVIEW: THE ARENA OF FORMAL LANGUAGES

The monad of finite subsets
SSS:fpow

After replacing
⊔

by t to indicate finiteness of the argument, one can argue essentially as above.
The devinition of the partial order is exactly the same.

The only change concerns the characterization of the EM-algebras. They are no longer
complete lattices, not even lattices, but just t-semilattices with bottom element ⊥ = ∅ t .
When every finite subset A ∈ X has a least upper bound, it suffices to consider subsets of size 2
and of size 0. The EM-homomorphisms have to preserve finite suprema, in particular the order
and ⊥ .

The set XF of finite subsets now is the free t-semilattice on the set X . In computer science
the corresponding monad F = 〈F, {−},∪〉 is used for modelling non-determinism.

The distributive laws linking (−)∗ with P resp. F
SSS:fpowdist

While, in general, monads on the same category need not give rise to a monad on the composite
functor, in our special case the composition of (−)∗ with P , resp. F can be extended to a
monad. The appropriate distributive law

P(−)∗ δ (−)∗P

(and similarly for F ) maps a string of n (finite) subsets Ai ⊆ X to their cartesian product, i.e.,
a (finite) subset of Xn ⊆ X∗ . The axioms of a distributive law are readily established HW.

Therefore in both cases, P and F one obtains two new monads: a composite monad on set
with functor (−)P , resp., (−)F , and liftings of the power-set monads to mon , the category of
EM-algebras for the free monoid monad. What are their algebras?

Fortunately, in both cases the categories of EM-algebras for the composite monad on set

and the lifted monad on mon agree.

P : we obtain the category uqnt of unital quantales, i.e., complete lattices with a monoid
structure, such that supremum is a monoid homomorphism. Morphisms are the supremum-
preserving monoid-homomorphisms.

F : we obtain the category dio of unital dioids, or idempotent semirings. Recall that a
ring is (classically) a set R equipped with the structure of an abelian group 〈R,+, 0〉 and a
monoid 〈R, ·, 1〉 such that multiplication · distributes over addition. (There are various fancyer
characterizations of rings, e.g., as the EM-algebras for the composition of the free abelian group
monad with the free monoid monad over set , or the EM-algebras of the lifting of the free abelian
group monad to the category mon of monoids, or as monoids internal to the category ab of
abelian groups with the tensor product.) One can now weaken the requirement on 〈R,+, 0〉 to
be just a commutative monoid, in which case one obtains unital semirings, or only ask for 〈R,+〉
to be a commutative semigroup, which yields semirings. Adding the requirement that + be
idempotent results in dioids. Taking non-empty finite subsets ought to produce dioids without
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0.2 First closure properties of rational sets 5

units as EM-algebras. (Among category theorists the terms “rng” and “rig” are often used for
“rings without unit” and “ring without negatives”, respectively.)

Further functors linking our categories of algebras
SSS:ffun

We have the following diagrams in Cat :

uqnt

mon
⊔

-slat

set

F ∗

U∗

FP

UP

F P̃

U P̃ V

>
>

>

dio

mon t-slat

set

F ∗

U∗

FF

UF

F F̃

U F̃ W

> >

>

0.2 First closure properties of rational sets
S:ClosRat

By definition, rational sets are closed under

. finite union,

. multiplication,

. Kleene star.

The latter combines multiplication with countable disjoint union.

As direct images preserve arbitrary unions and multiplication, we immediately get

P:RatDirImg 0.2.01 Proposition. Rational sets are closed under direct images.

By Kleene’s Theorem, the rational sets on finitely generated free monoids are closed under
complement, hence by DeMorgan’s rules also under intersection.

For general monoids this is not the case:

E:anbncn 0.2.02 Example. (
MPRI
[Pin16, Example IV.1.3]) Consider the monoid M = {a}∗ × {b, c}∗ and the

rational sets
R := 〈a, b〉∗〈1, c〉∗ = { 〈an; bncm〉 : m,n ∈ IN }
S := 〈1, b〉∗〈a, c〉∗ = { 〈an; bmcn〉 : m,n ∈ IN }

with intersection
R ∩ S = { 〈an; bncn〉 : n ∈ IN }

The projection into {b, c}∗ maps R ∩ S to the context-free language { bncn : n ∈ IN } ⊆ {b, c}∗

that is well-known not to be rational (or “regular” in that context). C
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6 0 OVERVIEW: THE ARENA OF FORMAL LANGUAGES

Hence in view of DeMorgan’s rules rational sets in general cannot be closed under comple-
mentation.

T:cartprod 0.2.03 Theorem. (
MPRI
[Pin16, Theorem IV.1.2]) Rational subsets are closed under formation of

cartesian products.

Proof. Note that for monoids Mi , i < 2 , the projections M0 ×M1
πi Mi are split epi in

mon with the canonical left inverses Mi
σi M0 ×M1 that combine the identity on Mi with

the unit 1 e1−i M1−i.

Now the cartesian product of rational subsets Ri ⊆ Mi , i < 2 , can be expressed as a
multiplication of two subsets

R0 ×R1 = (R0(σ0)∃) · (R1(σ1)∃)

both of which are rational, see Proposition
P:RatDirImg
0.2.06.

P:ratfingen 0.2.04 Proposition. (
MPRI
[Pin16, Proposition IV.1.3]) For every monoid M ,

MRat =
⋃
{M ′Rat : M ′ is a finitely generated submonoid of M }

Proof. It suffices to show the inclusion “ ⊆ ”. But the right hand side contains all finite subsets
of M , and hence their closure under finite unions, multiplication and Kleene star.

E:notfingen 0.2.05 Example. The set N∗ is not rational. C

P:RatDirImg 0.2.06 Proposition. (
MPRI
[Pin16, Proposition IV.1.1]) The power-monoid functor mon P mon

admits a pointwise restriction mon Rat mon that maps a monoid M to its set of rational
subsets. This inherits a monad-structure R = 〈Rat, ηR, µR〉 from P .

Moreover, any regular epi M ϕ N induces a surjection MRat ϕRat NRat.

Proof. Given a monoid homomorphism M ϕ N , the direct image function MP ϕP NP is a
monoid homomorphism and therefore preserve multiplication. As a left adjoint between complete
lattices, it also preserves (arbitrary) unions, and thus the Kleene star. Hence ϕP restricts to
a monoid homomorphism MRat ϕRat NRat. The unit of the monad R on mon carries
over directly to R , while for the multiplication µR we observe that rational unions of rational
sets are again rational (cf.. homework).

If ϕ is surjective, so are ϕP and ϕF , and since NRat is the closure of NF under finite
union, multiplication and Kleene star, the claim is obvious.
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0.3 Recognition by homomorphism, and recognizability 7

Given a homomorphism M ϕ N , in contrast to the direct image function MP ϕ∃ NP,
the other two interesting functions linking the unital quantales MP and NP , namely

NP ϕ−1

MP and MP ϕ∀ NP

need not be monoid homomorphisms. This is immediately clear when considering the units {eM}
and {eN} . Nevertheless, at least ϕ−1 is still reasonably well-behaved, if we considered in a
somewhat larger context.

D:laxhomo 0.2.07 Definition. Consider two ordered monoids 〈X, ·, eX ,v〉 and 〈Y, ·, eY ,v〉 , where the
multiplication is order-preserving. A function X λ Y is a lax homomorphisms, if

eM v enλ and ∀u, v ∈ X.uλ · vλ v (u · v)λ.

Dual Notion: oplax homomorphism, where the order is reversed. C

P:laxhom 0.2.08 Proposition. Given a homomorphism M ϕ N , both

NP ϕ−1

MP and MP ϕ∀ NP

are lax homomorphisms.

Proof. ϕ−1 : Clearly, {eM} ⊆ enϕ
−1 . Now consider U, V ⊆ N , and elements u ∈ Uϕ−1 and

v ∈ V ϕ−1 in the pre-images. Since ϕ is a monoid homomorphism, we have (u · v)ϕ ∈ U · V ,
and therefore Uϕ−1 · V ϕ−1 ⊆ (U · V )ϕ−1 , as required.

How does ϕ∀ behave with respect to the multiplication?

0.3 Recognition by homomorphism, and recognizability
SS:rechomo

D:rechomo 0.3.01 Definition. A subset L of a monoid M is said to be recognized by a morphismM ϕ N ,
if L belongs to the image of NP under the inverse image map ϕ−1 . If ϕ is surjective (= regular
epi), one says that L is fully recognized. C

D:recnable 0.3.02 Definition. A subset L of a monoid M is called recognizable, if it can be recognized
by a morphism with finite codomain. The class of all recognizable subses of M is denoted by
MRec . C

Notice that every recognizable subeset L of M can be fully recognized by a homomorphism
with finite codomain, since mon admits 〈regular epi, mono〉-factorizations.

Since pullback-squares compose, we immediately have

P:RecInvImg 0.3.03 Proposition. Recognizable sets are closed under inverse images.
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8 0 OVERVIEW: THE ARENA OF FORMAL LANGUAGES

Recognition by a given morphism allows various equivalent formulations:

P:aequiv 0.3.04 Proposition. For L ⊆M ϕ N the following are equivalent:

(a) L is recognized by ϕ .

(b) L is union of equivalence classes of the concruence ∼ϕ induced by ϕ , i.e., the kernel pair of
ϕ .

(c) L
(
ϕ∃ ; ϕ−1

)
= L , i.e., L is a fixed point of the closure-operator on MP induced by ϕ , or

an EM-Algebra for the monad on MP induced by ϕ .

Proof.

( a )⇒ (b ): Let L be the ϕ-pre-image of P ⊆ N . If x ∼ϕ y , then xϕ = yϕ , and hence x

and y either both belong to the L , or both lie outside of L . Hence every equivalene class
of ∼ϕ is either contained in L , or does not intersect L . Since the equivalence classes form
a partition of M , the claim follows.

(b )⇒ ( c ): Consider y ∈ L
(
ϕ∃ ; ϕ−1

)
. There exists x ∈ L with xϕ = yϕ , and therefore

x ∼ϕ y . But this implies y ∈ L .

( c )⇒ ( a ): Trivial.

P:BooSubAlg 0.3.05 Proposition. For every monoid M the set MRec forms a Boolean subalgebra of
MP . In particular, recognizable sets are closed under finite unions, finite intersections and
complementation.

Proof. Closedness under complementation is an immediate consequence of Proposition
P:aequiv
0.3.04.

The nullary intersection M is the inverse image of 1 under the unique monoid homomorphism
M ! 1.

For n > 0 consider morphisms M ϕi Ni with finite codomains that recognize Li ⊆ M

by means of Pi ⊆ Ni , i < n . The product N :=
∏
i<nNi is still finite, and the pullback of

P :=
∏
i<n Pi ⊆ N along M 〈ϕi : i < n〉 N results in L :=

⋂
{Li : i < n } , which therefore is

recognizable. Because of Proposition
P:BooSubAlg
0.3.05, unions now can be handled by DeMorgans laws.

The subsets of M recognized by a fixed homomorphism M ϕ N are closed under further
operations:

D:resiquo 0.3.06 Definition. The pre-residuation of L ⊆M with J ⊆M , is given by

J\L := {m ∈M : J ·m ⊆ L }
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0.3 Recognition by homomorphism, and recognizability 9

This has to be distinguished from the left quotient of L with respect to K

J−1L := {m ∈M : J ·m ∩ L 6= ∅ }

Dual Notions: the post-residucation L/K ; the right quotient LK−1 . C

R:resiquo 0.3.07 Remark. The notation for residuations and quotients are confusing in the litrature, so
one has to be very careful not to confuse these notions.

In fact, for singleton K both concepts agree, for j ∈M

j\L = j−1L

where we have dropped the set-brackets from the singletons. This base case yields residuations
by intersection, while quotients are obtained by unions:

J\L =
⋂
{ j\L : j ∈ J }

J−1L =
⋃
{ j−1L : j ∈ J }

Conceptually, however, both notions are very different: in the case of groups quotions can indeed
be considered as multiplications with J−1 = { j−1 : j ∈ J } from the left, respectively, with
K−1 from the right, since every x ∈ L can be written as jj−1x = x = xk−1k , so removing j

as a first/ k as a last factor leaves j−1 as first/ k−1 as a last factor that is multiplied with x .

On the other hand, pre-residuation with J is right-adjoint to pre-multiplication with J in
the categorical sense, and similarly with post-residuation with K ; this is part of the definition of
a unital quantale of which power-monoids are prime examples. For subsets J , K , and L of M
the following are equivalent:

K ⊆ J\L and J ·K ⊆ L and J ⊆ L/K (0.3-01) EQ:resi

In particular, fixing the set L gives an adjunction reminiscent of a polarity , see Diagram (
EQ:pola
4.5-05)

MP MPop

L/−

−\L

` (0.3-02) EQ:langpola

Therefore both −\L and L/− map unions (= colimits in MP = limits in MPop ) to intersections
(= colimits in MPop = limits in MP ).

In the case of quotients, both −−1L and L−−1 are order-preseving functions on MP . C
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10 0 OVERVIEW: THE ARENA OF FORMAL LANGUAGES

P:resiquo 0.3.08 Proposition. If L ⊆M is recognized by M ϕ N , so are all residuations of L and
all quotients of L .

Proof. Consider J ⊆M . We first show J\L = ((Jϕ∃)\(Lϕ∃))ϕ−1 .

m ∈ ((Jϕ∃)\(Lϕ∃))ϕ−1 ⇐⇒ mϕ ∈ (Jϕ∃)\(Lϕ∃)
⇐⇒ Jϕ∃ · (mϕ) ⊆ Lϕ∃
⇐⇒ (J ·m)ϕ∃ ⊆ Lϕ∃
⇐⇒ J ·m ⊆ (J ·m)ϕ∃ϕ

−1 ⊆ L
⇐⇒ m ∈ J\L

(Theorem
T:adjpresext
4.5.08 only seems to imply “ ⊇ ”.)

Next we claim J−1L =
(
(Jϕ∃)

−1(Lϕ∃)
)
ϕ−1 .

m ∈
(
(Jϕ∃)

−1(Lϕ∃)
)
ϕ−1 ⇐⇒ mϕ ∈ (Jϕ∃)

−1(Lϕ∃)

⇐⇒ Jϕ∃ · {mϕ} ∩ Lϕ∃ 6= ∅
⇐⇒ (J ·m ∩ L)ϕ∃ 6= ∅
⇐⇒ J ·m ∩ L 6= ∅
⇐⇒ m ∈ J−1L

The proofs for the post-residuation, respectively, the right quotient are analogous.

C:resiquo 0.3.09 Corollary. The Boolean algebras MRec are closed under arbitrary residuations and
quotients.

The following rules may enable us to simplify later calculations.

P:rr 0.3.10 Proposition. (
MPRI
[Pin16, Proposition IV.2.6]) For M ϕ N the direct image function

MP hP NP preserves intersections with and relative complements of subsets recognized by ϕ .

Proof. Consider L,R ⊆ M with L = L
(
ϕ∃ ; ϕ−1

)
. Clearly (R ∩ L)ϕ∃ ⊆ Rϕ∃ ∩ Lϕ∃ . Given

y ∈ Rϕ∃ ∩ Lϕ∃ , there exists x ∈ R with xϕ = y . But y ∈ Lϕ∃ implies x ∈ R ∩ L , hence
y = xϕ ∈ (R ∩ L)ϕ∃ .

On the other hand, R−L = R ∩ (M −L) , hence by Proposition
P:BooSubAlg
0.3.05 and the first part we

get (R− L)ϕ∃ = Rϕ∃ ∩ (M − L)ϕ∃ = Rϕ∃ ∩ (N − Lϕ∃) = Rϕ∃ − Lϕ∃ .

C:rr 0.3.11 Corollary. (
MPRI
[Pin16, Corollary IV.2.7]) If M ϕ N recognizes a relative complement

L = X0 −X1 ⊆M with X1 ⊆ X0 , then (X0 −X1)ϕ∃ = Xoϕ∃ −X2ϕ∃ .

Proof. Since X1 ⊆ X0 the condition L = X0 −X1 is equivalent to X1 = X0 − L , Proposition
P:rr
0.3.10 yields X1ϕ∃ = (X0 − L)ϕ∃ = X0ϕ∃ − Lϕ∃ , and consequently, Lϕ∃ = X0ϕ∃ −X1ϕ∃ .
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0.3 Recognition by homomorphism, and recognizability 11

Counter-examples

The following notion seems to be useful when constructing counter-examples.

D:locgrp 0.3.12 Definition. Call a subset G of a monoid 〈M, ·, e〉 a local group of M , if the binary
multiplication · induces a group structure on G , with a local neutral element eG ∈ G .

Notice that eG can differ from e , i.e., G does not have to be a submonoid. However, G is
of course closed under composition. The following result is immediate:

L:locgrp 0.3.13 Lemma. Local groups are preserved by monoid homomorphisms, and these induce group-
homomorphisms from the local group to its image.

E:locgrp 0.3.14 Example. It is well-known that one can add a new neutral element to every semi-group
S = 〈S, ·〉 , regardless whether S already has a neutral element (this is not the construction of
s1 from

MPRI
[Pin16]). Call the new semigroup SE .

On the category srg of semi-groups this yields a pointed endo-functor sgr ι E via the
inclusions of the original semi-groups into the extended ones.

On the categorymon , however, this yields a co-pointed endo-functor E σ mon , where
Mσ collapses the original and the new neutral element to the original one. For any group G

then G becomes a local group in GE .

E:FinNotRec 0.3.15 Example. Finite non-empty subsets of monoids need not be recognizable: Consider an
arbitray monoid homomorphism Z ϕ N with finite codomain. Since Z is a local group the
image N ′ := Zϕ∃ is a local group in N , in this case even a sub-monoid, and the co-restriction
of ϕ to N ′ is a group homomorphism. The cosets of the induced congruence on Z are all
isomorphic to the kernel U = eϕ−1 , which is a normal subgroup: they all have the form n+ Z
for some n ∈ Z . As Z is partitioned by finitely many isomorphic co-sets, they all have to be
infinite. Therefore no nonempty finite subset of Z is recognizable.

E:RecNoDirImg 0.3.16 Example. Recognizable sets need not be closed under direct images. Consider the
homomorphism {a, b}∗ ϕ Z induced by the function {a, b} f Z with af = 1 and bf = −1 .
By Kleene’s Theorem every finite subset of {a, b}∗ is recognizable, but by Example

E:FinNotRec
0.3.15 no

ϕ-image of a non-empty finite subset has this property.

E:RecNoComp 0.3.17 Example. (Shmuel Winograd) Recognizable sets need not be closed under the binary
operation and under Kleene star. Extend the addition of Z to Z + {e, a} as follows: a behaves
almost like a second copy of 0 ∈ Z :

a+ a = 0 and a+ n = n for all n ∈ Z

while e becomes a new neutral element (observe that 0 and a cannot be neutral anymore).
Now Z ⊆M is a local group that fails to be a submonoid.
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12 0 OVERVIEW: THE ARENA OF FORMAL LANGUAGES

Claim: every L ∈MRec satisfies L ∩ Z ∈ ZRec .

Let N be a finite monoid and L be the inverse image of P ⊆ N along M ϕ N . Then
L ∩ Z is the inverse image of P ∩ Zϕ∃ and hence recognizable.

Claim: {a} is recognizable in M .

Define N : = {e, a, z} with neutral element e , absorbing element z and a+ a := z . The
obvious morphism M ϕ N preserves e and a and maps every n ∈ Z to z .

Conclusion: neither {a}+{a} = {0} nor {a}∗ = {e, a, 0} is recognizable, since the intersections
with Z are finite.

O:BooAlg 0.3.18 Open Problem. Given a morphism M ϕ N , is there a Boolean algebra morphism
induced by ϕ linking MRec and NRec ? The direct image map ϕ∃ clearly does not work.

The interplay of Rat and Rec

T:McKn 0.3.19 Theorem. The following are equivalent for any monoid M :

(a) M is finitely generated.

(b) MRec ⊆MRat .

(c) M ∈MRat .

Proof.

( a )⇒ (b ): By hypothesis, there exists a regular epi A∗ π M . If L ⊆M is recognizable, so
is Lπ−1 (see Theorem

P:RecInvImg
0.3.03), which by Kleene’s Theorem is rational as well. But then so is

Lπ−1 ; π∃ . Since π is surjective, this set coincides with L .

( b )⇒ ( c ): Clear, since M ∈MRec .

( c )⇒ ( a ): Clear because of Proposition
P:ratfingen
0.2.04.

P:RatRec 0.3.20 Proposition. Intersections of rational with recognizable subsets are rational.

Proof. If R ⊆ M is rational, there exists a finitely generated sub-monoid M ′ of M with
R ⊆M ′ . Concretely, we consider a surjective monoid homomorphism A∗ π M ′ with a finite
alphabet A . By Proposition

P:RatDirImg
0.2.06 there exists a rational and hence recognizable set K ⊆ A∗

with Kπ∃ = R (K need not be the pullback of R along π ).

Let L ⊆ M be recognizable, say, the pullback of P ⊆ N along M ϕ N where N is
finite. Then L′ := M ′∩L is recognizable in M ′ , and L′′ := L′π−1 is recognizable in A∗ . Hence
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0.3 Recognition by homomorphism, and recognizability 13

K ∩ L′′ is recognizable and therfore rational in A∗ .

K

A∗

L′′

K ∩ L′′

R

R ∩ L

M ′

L′

M

L

N

P

ϕ

π

Using Proposition
P:rr
0.3.10 and the surjectivity of π we obtain

(K ∩ L′′)π∃ = Kπ∃ ∩ L′′π∃ = R ∩ L′π−1 ; π∃ = R ∩ L′

Hence R ∩ L = R ∩ L′ as the direct image of the rational set K ∩ L′′ is rational.

This result together with Example
E:anbncn
0.2.02 resembles what we learned about context-free

languages in TheoInf 1: on finitely generated free monoids, context-free languages in general are
not closed under intersection, but intersections with regular (=recognizable) languages are again
context-free.

T:Mezei 0.3.21 Theorem. L ⊆ M0 ×M1 is recognizable iff L is a finite union of sets of the form
L0 × L1 with Li ⊆Mi recognizable.

Proof. The recognizability of L0 × L1 is trivial, just consider the product of the codomains of
the morphisms recognizing Li , i < 2 . Moreover (M0 ×M1)Rec is closed under finite unions.

Conversely, suppose M0 ×M1
ϕ N recognizes L ⊆ M0 ×M1 . Compose ϕ with the

canonical left inverses Mi
σi M0 ×M1 to the projections (introduced in the proof of Theorem

T:cartprod
0.2.03) to obtain Mi

βi N , i < 2 . Composing M0 ×M1
β := β0 × β1 N ×N with the binary

composition N ×N · N (which is a monoid homomorphism because of the associativity)
recovers ϕ :

〈m0,m1〉(β ; ·) = m0β0 ·m1β1 = 〈m0, e1〉ϕ · 〈e0,m1〉ϕ = 〈m0,m1〉ϕ

Therefore we can pull P ⊆ N back along ϕ in two stages, first along N ×N · N , which
results in Q ⊆ N ×N , and then along β , which yileds L . But Q has an explicit description:

Q = { 〈n0, n1〉 ∈ N ×N : n0 · n1 ∈ P }

Since inverse image functions are left adjoint and hence preserve unions, we get

L =
⋃{

〈n0, n1〉β−1 : n0, n1 ∈ N ∧ n0 · n1 ∈ P
}

If N is finite, so is N ×N , and hence the sets 〈n0, n1〉β−1 = n0β
−1
0 ×n1β

−1
1 are recognizable.
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14 1 THE SYNTACTIC MONOID

1 The syntactic monoid
S:SyntMon

In the categorical approach to congruences
SS:cong
4.7, specifically Definition

D:regu
4.7.05 and Theorems

T:regimfac
4.7.06

and
T:exact
4.7.08, we have seen precisely how congruences and quotients come about in categories like

mon .

Given a morphism M ϕ N recognizing a sub-set L of M , one can consider its kernel pair
and the resulting congruence and quotient. According to Proposition

P:aequiv
0.3.04, L is the union of

some ∼ϕ -classes. This raises the question: is there a “best” or “most efficient” way of exhausting
L by congruence classes? The identity relation is the smallest congruence (w.r.t. ⊆ ) and manages
to exhaust L by means of singletons. Hence we are interested in the largest congruence that
exhausts L , if it exists.

L:CongCompLat 1.0.00 Lemma. The set of congruences on a monoid forms a compete lattice.

Proof. The subalgebra-property is preserved by arbitrary intersections of subalgebras, in particular
those on M ×M .

Hence we know that the desired congruence does exist. It remains to find a concise description.

Recall that a congruence ∼ on M admit two equivalent descriptions (cf. HW): it is an
equivalence relation on M that in addition

. is a sub-algebra of M ×M :

∀a, b, c, d ∈M.
(
〈a, b〉, 〈c, d〉 ∈ ∼ =⇒ 〈a, b〉 · 〈c, d〉 = 〈a · c, b · d〉 ∈ ∼

)
. satisfies

∀u, v ∈M.
(
〈u, v〉 ∈ ∼ =⇒ ∀x, y ∈M. 〈x · u · y, x · v · y〉 = 〈x, x〉 · 〈u, v〉 · 〈y, y〉 ∈ ∼

)
Both conditions may be referred to as stability of the equivalence relation.

Without reference to elements these conditions can be reformulated as

∼ · ∼ ⊆ ∼ resp. ∆M · ∼ ·∆M ⊆ ∼

In fact, since 〈e, e〉 ∈ ∼ we even have equality in both cases. The second condition resembles
the definition of an order-ideal (see Definition

D:order
4.12.00), with the order being discrete (∆M ) and

the relation product replaced by the multiplication of subsets of M ×M (however, order ideals
do not have to be equivalence relations). Moreover, it suggestes how to define congruences for
ordered monoids below.

While the first version of the stability condition directly generalizes to any type of set-based
algebra by extending the given condition of all operations, the second version is rather specific
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for monoids and heavily relies on the neutral element of a monoid. To give a formally similar
definition of congruence for a semi-group S , the second quantification has to extend over S1 ,
defined as S , if S is a monoid, and S + {1} , if S lacks a neutral element. It is presently
(2017-12-16) not clear, what such a categorcally questionalble definition is good for.

It should be clear that every congruence on a monoid M has the form ∆M · E ·∆M for
some equivaence relation E , since reflexivity, symmetry and transitivy are preserved by this
construction, while stabilty is automatic.

The main advantage of the second formulation of stability in case of monoids seems to be
that it allows the definition of a congruence based on membership in L .

D:SuntMon 1.0.01 Definition. The syntactic congruence of L ⊆M is defined by

u ∼L v iff ∀s, t ∈M. s · u · t ∈ L ⇐⇒ s · v · t ∈ L

The factor monoid SM (L) := M/ ∼L is known as the syntactic monoid of L , while the canoncal
surjection M ηL M/ ∼L is called the syntactic quotient .

P:synthcong 1.0.02 Proposition. ∼L is in fact a congruence.

Proof. Reflexivity, symmetry and transitivity are easy. Hence ∆M · ∼L ·∆M is a congruence,
which of course contains ∼L . It remains to show the other inlusion, i.e., that u ∼L v and
x, y ∈M implies x · u · y ∼L x · v · y . But by construction we have

∀s, t ∈M. s · (x · u · y) · t ∈ L⇐⇒ (s · x) · u · (y · t) ∈ L
⇐⇒ (s · x) · v · (y · t) ∈ L
⇐⇒ s · (x · v · y) · t ∈ L

[Is there no better way of showing stability?]

R:simL 1.0.03 Remark. Observe that ∼L is also the largest congruence contained in the equivalence
relation

L× L+ (M − L)× (M − L)

Clearly, for a congruence to be containied in here is equivalent to L (and M−L ) being exhausted
by congruence classes. Unfortunately, this does not seem to give a handle on computing ∼L ,
since pre- and post-multiplying the equivalence relation above with ∆M enlarges the relation,
but we need to shrink it.

It remains to establish the universal Property of ∼L , or equivalently ηL .

P:syntquot 1.0.04 Proposition. Any quotient of M that recognizes L ∈M factors through ηL . In other
words, ∼L is really the largest (w.r.t. ⊆ ) congruence such that ηL recognizes L .
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16 1 THE SYNTACTIC MONOID

Proof. Remark
R:simL
1.0.03 shows that L (as well as M − L ) is the union of ∼L -classes, hence by

Proposition
P:aequiv
0.3.04 ηL recognizes L .

Suppose M ϕ N is surjective and also recognizes L . Its kernel pair is a congruence, hence
satisfies

uϕ = vϕ implies ∀x, y ∈M. (x · u · y)ϕ = (x · v · y)ϕ

which by hypothesis implies

∀x, y ∈M. x · u · y ∈ L⇐⇒ x · v · y ∈ L

Hence every ϕ-class is contained in a ∼L -class. This gives the desired factorization of ηL . By
construction, M/ ∼L is also a quotient of N .

If M ϕ N recognizes L ⊆ M , we can always take the (regular epi,mono)-factorization
M e E m N of ϕ . The e-image of L is essentially the same as the ϕ-image of L and
has the same syntactic monoid as Lϕ∃ .

The following Proposition is awkward as it deliberately avoids morphisms in favour of fancy
terminology borrowed from group theory. Moreover, it is not clear why this result has been
formulated only in the special case of M = A∗ , as Pin does not restict the concept of a monoid
“dividing” another to free dividends. Perhaps a more sugestive name might be partial quotient .

P:div 1.0.05 Proposition.

(0) A monoid N recognizes L ⊆ M iff SM (L) is the quotient of some submonoid of N
(SM (L) “divides” N ).

(1) If N recognizes L ⊆M and “divides” N ′ , then N ′ also recognizes L as a quotient of E
rather than N .

For recognizable languages L over a finite alphabet A we have already mentioned that the
syntactic monoid SM (L) ought to be the transition monoid of the minimal automaton that
recognizes L . Pin provides such a proof.

However, we diverge here from Pin and follow Manfred Kufleitner
Kuf14
[Kuf] (found too late) who

introduces generalized automata over arbitray monoids. Then the result alluded to above will
hold in full generality. In addition, some ideas already present in JKs version of “Theoretische
Informatik 1” can be developed further.
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2 Automata over general monoids
S:AGM

The notion of an automaton over a general monoid M is not too different from the concept
of a generalized automaton over A∗ for some alphabet A (called ∗NEA in JK’s slides for
“Theoretische Informatik 1”): transitions can be labeled with arbitrary elements of A∗ , as long
as there are only finitely many transitions altogether. The latter condition insures that only
finitey many elements of A can actually occur in the transitions, a crucial requirement, if one is
interested in establishing a correspondence between rational expressions and automata.

If the monoid M is finitely generated, we have a regular epi A∗ π M for some finite
alphabet A and the set Aπ∃ generates M . In case that an M -automaton only has transitions
labeled by the generators, i.e., elements of Aπ∃ , one arrives at a concept that Kufleitner calls
“step-by-step automaton”, which is closer to the classical notion of automaton. However, for a
general M -automaton, even if a canonical set of generators is known (as for A∗ ), the possible
decompositions of the labels in terms of the generators is irrelevant.

It is important to notice automata over general monoids á priori are non-deterministc in the
sense that they employ transition relations rather than transition functions. Only for step-by-step
automata the prefix-property of the set of generators can be of relevance, i.e., whether or not
some generators are prefixes of others.

Deterministic automata will be introduced later.

D:Maut 2.0.00 Definition. For any monoid M , a non-deterministic M -automaton A = 〈Q, δ, I, F 〉
consists of

. a set Q of states;

. a function(!) M δ 〈Q,Q〉rel assigning transition relations on Q to the elements of M ;

. sets of initial and final states I, F ⊆ Q .

A is called finite, if the number of transitions, considered as a subset of Q×M ×Q is finite.

Think of states and transitions as a graph together with a graph homomorphism into the
singleton graph with hom-set M . Typical notation:

p qm for 〈p, q〉 ∈ mδ

This actually is the notion of a labeled transition system. In addition, initial and final states are
indicated by incoming arrows without source, resp., outgoing arrows without target:

p0 q1
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18 2 AUTOMATA OVER GENERAL MONOIDS

Of course, the generalization to non-singleton target graphs or possibly categories is immediate
if one accepts the idea of typed alphabets.

As mentioned before, since 〈Q,Q〉rel is an ordered monoid, the canonical notion of morphism
is that of a lax homorphism, rather than a monoid homomorphisms. In particular, the function δ

ought to introduce a lax homomorphism from M to 〈Q,Q〉rel . In fact, the saturation δ̃ of the
function δ is the lax homomorphism given by

M

MP M∗P (〈Q,Q〉rel∗)P (〈Q,Q〉rel)P

〈Q,Q〉rel

Mη

ξ−1
δ∗P ξP

⊔

δ̃ (2.0-00) EQ:sat

where ξ denotes the the structure morphisms of the given monoids as EM-algebras and the
inverse image map MP xi−1

M∗P is the only lax homomorphism (cf., Proposition
P:laxhom
0.2.08),

while all other components are strict.

Concretely this means: the relation wδ̃ ⊆ Q × Q is the union of all compostite relations
w0δ;w1δ; . . . ;wn−1δ , where w0 ·w1 . . . wn−1 runs through all possible decompositions of w ∈M .

Now the notion of acceptance becomes easy:

D:accept 2.0.01 Definition. An M -automaton A = 〈Q, δ, I, F 〉 accepts w ∈ M iff 1 I Q wδ̄

Q F 1 is not empty.

R:lax 2.0.02 Remark. In view of this somewhat complicated notion of acceptance why not require
the function M δ 〈q, q〉rel in Definition

D:Maut
2.0.09 to be a lax homomorphism to start with? In

that case we need to introduce the notin of a “finitely generated lax homomorphisms” in order to
handle the notion of finiteness, since saturation does not preserve finiteness. Hence one cannot
get around introducing at least some notion of saturation.

2.0.1 Rational sets are accepted by finite nondeterministic automata
SS:RatNonDetAut

2.0.03 Proposition. For any monoid M any finite subset R ⊆ M is accepted by a finite
nondeterministic automaton.

Proof.

We use a state set Q of the form {q0}+{qr : r ∈ E} with I = {q0} and F = {qr : r ∈ R} .
The only transitions are given by

q0 qr
r for r ∈ R

It is immediately cleat that this automaton is finite and accepts R .
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P:union 2.0.04 Proposition. If two sets Li ⊆M , i < 2 , are accepted by nondeterministic automata,
then so is their union L0 ∪ L1 .

Proof.

Just take the disjoint union of the automata accepting L0 and L1 , respectively.

P:compo 2.0.05 Proposition. If two sets Li ⊆M , i < 2 , are accepted by nondeterministic automata,
then so is their composition L0 · L1 .

Proof.

Consider finite automata Ai = 〈Qi, δi, Ii, Fi〉 that accept Li , i < 2 . The new automaton
A = 〈Q, δ, I, F 〉 is the sequential composition of A0 with A1 ; more precisely,

. Q := Q0 +Q1 ;

. mδ := mδ0 +mδ1 if m 6= e , and eδ := eδ0 + eδ1 + (F0 × I1) ;

. I := I0 and F := F1 .

The paths from I = I0 to F = F1 are precisely the composite paths from I0 to F0 with those
from I1 to F1 linked by one of the new e-transitions from I0 to F1 .

P:Kleene 2.0.06 Proposition. If the set L ⊆ M is accepted by a finite nondeterministic automaton,
then so is its Kleene star L∗ .

Proof. Observe that

L∗ =
⋃
{Ln : n ∈ N } = L0 ∪

⋃
{Ln : n ∈ N>0 } = {e} ∪ L+

In view of Proposition
P:union
2.0.04 it suffices to construct a finite automaton that accepts L+ .

Consider a finite automaton A = 〈Q, δ, I, F 〉 that accepts L . The corresponding feedback
automaton A+ , where in addition all final states are inked with all initial states by means of
e-transitions

eδ+ := eδ + (F × I)

is finite and accepts L+ .

R:Kuf 2.0.07 Remark. Kufleitner insists on single initial states even for non-deterministic automata,
and requires that initial states have no incoming arrows, while final states have no outgoing
arrows. These requirements may be technically convenient, but it is not clear that they are
absolutely neccessary.

T:AutRatExpr 2.0.08 Theorem. The language accepted by a finite automaton is rational.

Proof. The Lijk -algorithm of Theoretische Informatik 1 just works.
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D:Maut 2.0.09 Definition. For any monoid M , a deterministic M -automaton A = 〈Q, δ, q0, F 〉 con-
sists of

. a set Q of states;

. a monoid homomorphism(!) M δ 〈Q,Q〉set assigning transition functions on Q to the
elements of M ;

. an initial state q0 ∈ Q and a set of final states F ⊆ Q .

A is called finite, if the set Q is finite.

R:fdMaut 2.0.10 Remark.

. While in general deterministic M -automate are subsumed by non-deterministic M -automata,
this is no longer true in the finite case: if Q is finite, and M is infinite, in the deterministic
case the set of transitions as a subset of Q×M ×Q cannot be finite. On the other hand, the
monoid 〈Q,Q〉set is finite. In particular, many of the transition functions mδ , m ∈ M ,
have to agree, we just do not know which ones do. A similar argument holds for step-by-step
automata, if A∗ π M is a regular epi. There is no need for A to be finite, even if Q is.
Only if both A and Q are finte, finite deterministic step-by-step automata are subsumed by
finite non-deterministic step-by-step automata.

. Using a mere function M δ 〈Q,Q〉set instead of a monoid morphism will always produce a
monoid homomorphism from M∗ to 〈Q,Q〉set , but not neccessairy a monoid homomorphism
from M to 〈Q,Q〉set . Since 〈Q,Q〉set is only discretely ordered and fails to be a complete
lattice, the construction of Diagram (

EQ:sat
2.0-00) is not available. Whether or not an element

m ∈M is accepted by an automaton that utilizes just a function δ amounts to the existence
of a ξ -preimage ω ∈M∗ of m that is accepted by the automaton, not a very deterministic
notion.

T:RecAcc 2.0.11 Theorem. Every recogngnizable set L of a monoid M is accepted by a deterministic
M -automaton, and vice versa.

Proof. Suppose L ⊆ M is the pre-image of P ⊆ N under the homomorphism M ϕ N .
Construct an automaton A by setting

. Q := N ;

. mδ := (−) ·mϕ , m ∈M ;

. q0 := eN and F := P .
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Notice that δ is indeed a monoid homomorphism, as required. By construction, A accepts
m ∈M iff q0 ·mϕ ∈ P .

Conversely, if A accepts L ⊆M , consider the δ - image N := Mδ∃ ⊆ 〈Q,Q〉set of M and
the subset P := {Q ψ Q : ψ ∈ N ∧ q0ψ ∈ F }. By construction, L is the pre-image of P .

Observe that in both cases A is finite iff N is finite.

3 Green’s Relations, not just on monoids but on categories!
S:GR

Just as the structure of the graph underlying an automaton A for a language or set L ⊆M can
reveal properties of L , the structure of a monoid N recognizing L can be useful.

In particular, one is interested in the divisibility relations satisfied in N , including the
idempotents. An important tool in the analysis are the so-called “Green’s relations”, a set of
five equivalence relations definable in any monoid. Three of these express the fact that two
elements are mutually postfixes (R ), prefixes (L ) or infixes ( J ) of each other, while the other
two relations H and D form the meet (or infimum) and join (or supremum) of R and L in the
complete lattice of equivalence relations.

Traditionally, the equivalence relatins L , R and J are derived from pre-orders ≤L , ≤R and
≤J that express the fact that the second(!) argumment is a postfix/prefix/infix of the first one.
And these pre-orders are expressed in terms of set-inclusions of suitable principal left/right/2-sided
ideals. In our view this approach to Green’s relations is unnecessarily complicated and obscures
the simple fact that these notions make sense in every category, not just in monoids. This is
useful when working with typed alphabets , or finite graphs, as already indicated in the context of
M -automata and labeled transition systems after Definition

D:Maut
2.0.09.

For the sake of completness we spell out the ideal-theoretic approach to Green’s relations.

D:MonIdeal 3.0.00 Definition. A subset A ⊆M of a monoid is called a left ideal , if M ·A ⊆ A .

Dual Notion: right ideal .

A 2-sided ideal , or just ideal, is a subset A ⊆ M that is both a left and a right (monoid)
ideal, and hence satisfiess M ·A ⊆ A ⊇ A ·M .

These notions correspond precisely to the categorical notions of left/right/2-sided ideals
mentioned in Examples

E:2sideal
4.9.03 and

E:lrideal
4.10.01

Since we are interested in monoids rather than semigroups, the inclusions above may be
replaced by equalities.

R:MonIdl 3.0.01 Remark.

. The notion of ideal makes sense in any category of monoids in a monoidal category (not
necessarily symmetric)
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Ideals in monoids have to be distinguished from ideals in rings: the latter in addition have to
be subgroups with respect to the addition. This is consistent with the observation that rings
are monoids in the category ab of abelian groups. Notice that Z as a ring is a principal ideal
domain, i.e., all ring ideals are principal ideals of the form a · Z for some a ∈ Z . Viewing
Z as just a monoid with respect to multiplications, there exist further ideals, e.g., the sets
In,k := {0} ∪ { a ∈ n · Z : |a| > k } . Unless explicitly stated, in these notes “ideals” will refer
to “ideals in monoids”.

. Some authors insist on ideals not being empty. But in that case infinite intersections of ideals
can fail to be ideals: in 〈Z, 0,+〉 consider the ideals Jk := { a ∈ Z : |a| > k } , k ∈ N . Their
intersection obviously is empty. Moreover, it would exclude the profunctor specified by the
empty sub-functor of Mop ×M hom set from being an ideal.

R:IdlMon 3.0.02 Remark. The left/right/2-sided ideals of a monoid M , respectively, form a subset of
MP that is closed under composition, but unless |M | = 1 does not contain the unit {e} of
MP . Instead, M is a left/right/2-sided ideal and acts as a neutral element of the corrsponding
monoids, which, however, are not sub-monoids of MP .

There is no categorical reason that left/right ideals should compose, this opertion does not
type-check, but rather is a spurious consequence of the fact that monoids have only one object.
On the other hand, the composition of 2-sided ideals does make sense, as does the composition of
a left with a right ideal, which results in a 2-sided ideal.

L:GenIdl 3.0.03 Lemma. Given a monoid M , the left/right/2-sided ideal generated by B ⊆M is given
by M · B /B ·M /M · B ·M , respectively. In case of a singleton set B we call such ideals
principal ideals.

For 2-sided ideals we obtain an oplax monoid homomorphism MP 〈M,M〉prof

Proof. Clearly, M ·M · B = M · B , hence M · B is indeed a left ideal. For right idels and
2-sided ideals the argument is similar.

Composing the 2-sided ideals M ·A ·M and M ·B ·M results in the 2-sided ideal generated
by A ·M · B , which in general differs from the 2-sided ideal generated by A · B , unless A

or B itself is a 2-sided ideal. Now A · B ⊆ A ·M · B implies the corresponding inclusion
for the generated 2-sided ideals. Moreover, the unit {e} of MP is mapped to the unit M of
〈M,M〉prof , therefore the assignment A 7→M ·A ·M is oplax (even normalized oplax, as the
units are preserved on the nose).

R:lrcomp 3.0.04 Remark. Due to the fact that monoids have only one object, the composition of the left
ideal M M ·A 1 with the right ideal 1 B ·M M results in the 2-sided ideal M ·A ·B ·M . In
general this differs from the composition of the 2-sided ideals generated by A , respectively, B ,
which happens to be M ·A ·M ·B ·M . All of this specializes to the principal case as well.
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D:t-green 3.0.05 Definition. (traditional) On a monoid M one defines three pre-order relations (not
necessarily anti-symmetric) and three corresponding equivalences, the first three Green’s relations
as follows:

. a ≤R c :⇐⇒ a ·M ⊆ c ·M and aRc :⇐⇒ a ≤R c ∧ c ≤R a ;

. c ≤L b :⇐⇒ M · c ⊆M · b and cLb :⇐⇒ c ≤L b ∧ b ≤L c ;

. a ≤J b :⇐⇒ M · a ·M ⊆M · b ·M and aJb :⇐⇒ a ≤J b ∧ b ≤J a .

As the lattice of equivalence relations on a given set is always complete, we can also form the
infimum H := L u R = L ∩ R and the supremum D := L t R ; these are the remaining two
Green’s relations.

A more direct description of the order relations defined above addresses the notion of
divisibility:

a ≤R c iff ∃u. a = c · v i.e., c is a prefix of a

c ≤L b iff ∃v. c = u · b i.e., b is a postfix of c

a ≤J b iff ∃u, v. a = u · b · v i.e., b in an infix of a

This suggests the categorical version of these relations below:

D:c-green 3.0.06 Definition. (categorical) Given a category C , we define three pre-orders and three
corresponding equivalence relations on the class of C -morphisms:

. We set a ≤R c iff a and c have the same domain X and the hom-set [a, c] in the
comma-category X/C is not empty; i.e., if c is a first factor of a :

X

S

Y

a

c

v (3.0-00) EQ:GR

Hence aRc means that a and c have a common domain and are mutually first factors of
each other.

. If c and b have the same cocomain Y , we set b ≤L c iff the the hom-set [c, b] in the
comma-category C /Y is not empty; i.e., if c is a last factor of b :

T

Y

X

b

u

c

(3.0-01) EQ:GL
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Hence cLB means that c and b have a common codomain and mutually are last factors of
each other.

. Without constraint on X a S and T b Y we set a ≤J b if b factors through a ; i.e.,
there exist arrows X u T and S v Y with a = u ; c ; v :

X S

T Y

a

b

vu (3.0-02) EQ:GJ

Hence aJb means that a and b mutually factor through each other.

. As before, H and D are defined as the infimum, resp., supremum of L and R . Observe
that only parallel arrows can be in relation H .

R:GreenCongr 3.0.07 Remark.

. In both cases the relations ≤R , ≤L and ≤J are clearly pre-orders, hence their symmetriza-
tions R , L and J , respectively, are equivalence relations.

Alternatively, R , L and J also arise als kernel-pairs of the set -functions that map C -
arrows to the generated principal ideals in 〈1,C 〉prof in case of R , in 〈C ,1〉prof in case
of L , and in 〈C ,C 〉prof in case of J . Only the third case the codomain is a monoid, but
already in the case that C = M the assignment a 7→M · a ·M in view of Lemma

L:GenIdl
3.0.03 is

only a normalized oplax monoid homomorphism from MP to 〈M,M〉prof . Whether this
suffices to turn J into a congruence remains to be seen.

. In the categorical setting, for X a S the R-class [a]R and the principal ideal a ; S/C

determine each other uniquely: if aRc then a ; S/C = c ; S/C , and if the principal ideals
a ; S/C and c ; S/C coincide, then aRc .

. The supremum of two equivalence relations in general is difficult to compute explicitly, similar
to the computation of a coequalizer. However, in this special case the relationship of R and
L to their supremum D turns out to be rather simple, see Proposition

P:JLR
3.0.11.

P:idp 3.0.08 Proposition. Any idempotent arrow B i B of a category C satisfies: If i is a first
factor of B g C (a last factor of A f B), then i is a first factor of g (a last factor of f ).

Proof. If (B i B h C) = (B g C), then

(B i B g C) = (B i B i B h C) = (B i B h C) = B g C)
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P:idpPow 3.0.09 Proposition. If M is a finite monoid with n elements, for each a ∈M the power an!

is idempotent.

Proof. For n = 1 the claim is trivial. Hence suppose n > 1 . For every k < n we have
an! =

(
ak+1

)n!/(k+1) . As there are at most n distinct powers of a , there has to be a smallest
k < n satisfying ak+1 =

(
ak+1

)n!/(k+1) . Since at least one of the exponents k+ 1 and n!/(k+ 1)

is even, we obtain the required idempotent power of a .

P:leJLR 3.0.10 Proposition. For every category ≤J = ≤L ; ≤R = ≤R ; ≤L .

Proof. Since combining Diagrams (
EQ:GR
3.0-00) and (

EQ:GL
3.0-01) along c yields Diagram (

EQ:GJ
3.0-02), we get

R ; L ⊆ J .

Conversely, a ≤J b implies the existence of C -morpgisms u, v such that Diagram (
EQ:GJ
3.0-02)

commutes. But then aR(u ; b)Lb and also aL(b ; v)Rb .

P:JLR 3.0.11 Proposition. L ; R and R ; L always agree with D = L uR , and for categories where
all hom-sets of the form 〈X,X〉C are finite, also agree with J .

Proof. We first show R ; L = L ; R . Suppose aRcLb , cf.. Diagrams (
EQ:GR
3.0-00) and (

EQ:GL
3.0-01). By

definition, c ∈ [a]R ∩ [b]L . There exist C -morphisms X
u

u′
T and Y

v

v′
S with

a = c ; v , c = v′ ; a and c = u ; b , b = u′ ; c

Clearly, pre-composition with some morphism preserves R , while post-composition preserves L .
Hence − ; v restrict to a function from [c]L = [b]L to [a]L , while − ; v′ maps in the opposite
direction. In particular, we set d := b ; v ∈ [a]L .

Similarly, − ; v′ restricts to a function from [a]L to [c]L = [b]L , while u ; − and u′ ; −
restrict to functions between [b]R and [a]R . This is illustrated by the following “egg-crate”
picture:

a c

bd

[a]R

[b]R

[a]L [b]L

u;−u′;−

−; v′

−; v

(3.0-03) EQ:egg
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Claim. The functions − ; v′ and − ; v are mutual inverses between [a]L and [b]L , while u′ ; −
and u ; − are mutual inverses between [a]L and [b]L .

We already know a ; v′ ; v = a . Furthermore

d ; v′ = b ; v ; v′ = u′ ; c ; v ; v′ = u′ ; a ; v′ = u′ ; c = b

Hence for any y ∈ [b]L setting x := b ; v by the same argument yields x ; v′ = y . This settles
the claim for − ; v and − ; v′ . The argument for u ; − and u′ ; − is analoguous. This shows
R ; L = L ; R .

Clearly, due to the reflexivity of L and R we have L,R ⊆ R ; L = L ; R . Consider any
equivalence relation Q with L,R ⊆ Q . Transitivity shows R ; L = L ; R ⊆ Q ; Q ⊆ Q . This
establishes R ; L = L ; R as the join D of L and R .

Finally, consider the case where all hom-sets of the form 〈X,X〉C are finite. By Proposition
P:idpPow
3.0.09 every idempotent in such a hom-set has an idempotent power.

By definition we have L,R ⊆ J and hence R ; L = L ; R ⊆ J . Conversely, consider aJb ,
which means a = u ; b ; v and b = u′ ; a ; v′ for suitable C -morphisms u, u′, v, v′ . Substituting
a yields

X S

T Y

X S

a

a

v

u v′

u′

For suitble N > 0 the endomorphism (u′ ; u)N is idempotent. Then by Proposition
P:idp
3.0.08 we

have

a = (u′ ; u)N ; a = (u′ ; u)N−1 ; u′ ; u ; a

and hence a ≤L u ; a . But u ; a ≤L a is true by default, and so we obtain aL(u ; a) .

In similar fashion one can use an idempotent power of v ; v′ to obtain aR(a · v) . Since R is
stable under pre-composition, this furthermore implies (u ; a)R(u ; a ; v) = b , which combined
with aL(u ; a) results in a(L ; R) = b , and hence J ⊆ L ; R .

C:egg 3.0.12 Corollary. Every D-class is partitioned in L-classes of the same size, and in R-clases
of the same size. All H classes arise as intersections of L-classes with R-classes and are preserved
by the isomorpnisms in Diagram (

EQ:egg
3.0-03).

P:JleL 3.0.13 Proposition. In any category, where all hom-sets of the form 〈X,X〉C are finite, we
have

J ∩ ≤L ⊆ L and J ∩ ≤R ⊆ R
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Proof. aJb and a ≤R b due to the symmetry of J implies the existence of C -morphisms u′ ,
v′ and w such that b = u′ ; a ; v′ and a = b ; w , i.e.,

X Y

Y

X S

b

u′

b

w

v′

The endomorphisms u′ and w ; v′ have idempotent powers, in particular let (w ; v′)N be
idempotent with N > 0 . Using Lemma

P:idp
3.0.08 we get

b = b ; (w ; v′)N = b ; w ; v′ ; (w ; v′)N=1

and hence b ≤R b ; w = a . By hypothesis this yields aRb , as desired.

Mikołaj Bojańczyk goes so far as claiming that this simple result essentially contains the
theory of finite monoids, and by extension, of categories with finite endo-hom-sets.

P:JLRne 3.0.14 Proposition. In any category aDb impliies [a]L ∩ [b]R 6= ∅ . In case all endo-hom-sets
are finite, one can use the equivalent hypothesis aJb .

Proof. This is a simple consequence of D = R ; L = L ; R and of D = J in the case of finite
endo-hom-sets.

Green’s classical lemma combines the results above in the case of monoids:

L:Green 3.0.15 Lemma. (Green’s Lemma) Consider a finite monoid M = 〈M, ·, e〉 and elements
a, b ∈M satisfying aJb (or equivalently, aDb ).

. If aRc , and this is realized by elements v, v′ ∈M with a · v′ = c , resp. b · v = a , then the
corresponding right-multiplications − · v′ and − · v restrict to inverse bijections between
[a]L and [b]L that, moreover, preserve H -classes.

. If cLb , and this is realized by elements u, u′ ∈M with u′ · c = b , resp. u · b = c , then the
corresponding left-multiplications u′ · − and u · − restrict to inverse bijections between [c]R
and [b]R that, moreover, preserve H -classes.

We now turn to idempotent endomorphisms.

L:LL 3.0.16 Lemma. (Location Lemma (Clifford and Miller)) In Diagram (
EQ:egg
3.0-03) we have

c = a ; b iff d is idempotent.
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Proof.

(=⇒) If aR(a ; b) for v′ = b there exists y with a = (a ; b)c ; v . Morover, aR(a ; b)L(a ; b)

implies aD(′8ab) . Now by Proposition
P:JLR
3.0.11 (resp. Green’s Lemma) − ; b and − ; v yield

inverse bijections between [a]L and [a ; b]L . In particular, d := b ; v satisfies d ; b = b ; v ; b = b

and hence d = (b ; v)2 is idempotent.

(⇐=) Let d = b ; v ∈ [a]L ∩ [b]R be idempotent. Since a = u′ ; d and b = d ; v′ by Proposition
P:idp
3.0.08 a = a ; d and b = d ; b . Now − ; b is an H -class-preserving bijection from [d]L to [b]L
that maps a ∈ [d]L to a · b ∈ [b]L . Similarly, a ; − is an H -class-preserving bijection from
[d]R = [b]R to [a]R that maps b ∈ [d]R to a ; b ∈ [a]R .

T:Green 3.0.17 Theorem. (Green’s Theorem) If M is a monoid and d ∈ M is idempotent, then
[i]H is a local group in M in the sense of Definition

D:locgrp
0.3.12. Hence every H -class Ξ contains at

most one idempotent element, and this is the case iff Ξ ∩ Ξ2 6= ∅ .

Proof. Let C have one object and hom-set M . For a, b ∈ [d]H observe [d]H = [a]L ∩ [b]R =

[a]R ∩ [b]L , hence a ; b ∈ [d]H . Proposition
P:idp
3.0.08 guarantees that i is neutral in [d]H .

As in the proof above, a ; − is an H -class-preserving bijection from [d]R to [a]R , and hence
a bijection from [d]H to [a]H = [d]H . In particular, i has to have a pre-image under a ; − in
[d]H , which is the desired inverse of a .

As neutral elements of groups are unique, H -classes can contain at most one idempotent.

Suppose G ⊆ M is a local group with d ∈ G neutral, hence idempotent in M . For each
a ∈ G there exists a “local inverse” a′ with a ; a′ = d = a′ ; a , hence d ≤R a and d ≤L a . But
since d ; a = a = a ; d we also have a ≤R d and a ≤L d . Therefore dLa and dRa , hence dHa .
This shows G ⊆ [d]H .

Clearly, every local group in M is contained in an H -class, the class of its neutral element,
and the H -classes with an idempotent element are precisely the maximal local groups.

3.0.18 Proposition. If a D-class of a category contains an idempotent S d S, then every
R-class and every L-class contained in this D-class also contains an idempotent.

Proof. If [d]H coincides with [d]D , it also coincides with [d]L and with [d]R , and we are done.

Otherewise, [d]H is a proper subset of [d]D . For (X c Y ) ∈ [d]D−[d]H choose (X a S) ∈
[d]L ∩ [c]R. There exists X u S with u ; d = a and S u′ X with u′ ; a = d . Therefore
a ; u′ ; a ; u′ = a ; i ; u′ = u ; d ; i ; u′ = u ; d ; u′ = a ; u′ is idempotent on X .

Moreover, there exists Y v S with c ; v = a and S v′ Y with a ; v′ = c . Therefore
a ; u′ = c ; v ; u′ implies a ; u′ ≤R c , while c = a ; v′ = u ; d ; v′ = u ; d ; d ; v′ = a ; d ; v′ =

a ; u′ ; a ; v′ implies c ≤R a ; u′ . This shows a ; u′ ∈ [c]R .

Similarly, with (S b Y ) := (S d S v Y ) ∈ [d]R ∩ [c]L we obtain another idempotent
v ; b on Y that belongs to [c]L .
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P:SBG 3.0.19 Proposition. Any two maximal subgroups contained in the same D-class of C are
isomorphic.

Proof. Consider different idempotents S d S and X c X satisfying dDc . For (S b X) ∈
[d]R ∩ [c]L we have d ; b = b and u ; b = c . Hence the composition of − ; b and u ; − yields a
bijection from [d]H to [c]H which maps d to u ; d ; b = u ; b = ac .

In analogy to the preceding proof, b ; u ∈ [b]R turns out to be idempotent on S . Hence
every y ∈ [b]R satisfies b ; u ; y = y . For x, y ∈ [d]H this yields

(u ; x ; b)(u ; y ; b) = u ; x ; (b ; u ; y) ; b = u ; x ; y ; b

which establishes the desired homomorphism.

3.0.1 A proof of Schützenberger’s result via Green’s relations

The following is based on lecture notes of Kumar. [to be transfered from handwritten notes.]

Recall that the rational languages on free finitely generated monoids can be described by
rational expressions in nullary and binary union, concatenation and Kleene star, in addition to
the letters of the alphabet. Since by Kleene’s Theorem on such monoids they coincide with the
recognizable langages, they are closed under complement as well. Hence one can extend the
rational expressions for those languages by adding a unary operator (−)c for complementation.

With these extended rational expressions, one can study classes of languages that satisfy
certain constraints.

D:*free 3.0.20 Definition. A language L ⊆ Σ∗ for finite alphabet Σ is called star-free, if it cn be
described by a rational expression withour the Kleene star.

E:*free 3.0.21 Example. Let Σ be a finite alphabet.

. The language Σ∗ = (∅∗) c is star-free.

. For any B ⊆ Σ the language B∗ = (Σ∗BcΣ∗) c is star-free.

. If a ∈ Σ then the language described by (aa)∗ is not star-free.

Schützenberger in [???] managed to characterize the star-free languages in terms of their
syntactic monoids.

D:aper 3.0.22 Definition. A monoid M is called aperiodic, if for every idenpotent power of the form
mN with N > 0 we have mN = mN ·m .

A category C is called aperiodic, if every endo-hom-set has this property.
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D:LRJHDtriv 3.0.23 Definition. An L / R / J / D / H -class is called regular , if it contains an idempotent.
The category C is called L / R / J / D / H-trivial , if every regular L / R / J / D / H -class
is a singleton.

P:Htriv 3.0.24 Proposition. If M / every endo-hom-set of C is finite and all regular H -classes are
trivial, then all H classes are trivial.

Proof. Consider y with idempotent power yN , N > 0 . We claim show yN+1 = yN . From
yN = yNyyN−1 we infer yNJyN+1 (as well as similar relations for L , R , and H ). The
hypothesis |[yN ]J| = 1 then yields yN+1 = yN

Now consider a , b in some H -class H . As there exist u, v with a = u ; b and b = a ; v ,
we get a = ukavk for each k > 0 . If yN is idempotent, the first part shows a = uNavN =

uNavN+1 = a ; v = b .
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4 Appendix: mathematical foundations
S:apdx

4.0 Categories, functors and natural transformations
SS:cat

It is useful to consider “all sets and functions” as well as “all monoids and homomorphisms” and
other collections of this type as single mathematical entities, called “categories”. In contrast to
familiar algebraic or order-theoretic structures, these will be 2-sorted: we distinguish “objects”,
like sets or monoids, and “arrows”, like functions or homomorphisms. The the latter connect the
objects and can be assigned a “domain” or “source” and a “codomain” or “target”. So far this
specifies a directed graph, possibly large, i.e., with a proper class of nodes. Categories arise when
the arrows are equipped with a well-behaved composition operation on arrows where target and
source match; this has to be associative and have neutral elements or “identities” for each object.

D:cat 4.0.00 Definition. A graph
C : C1

∂0

∂1
C0

consists of (possibly large) sets C0 of objects (or vertices, or 1-cells), and C1 of morphisms
(or edges or arrows or 2-cells), connected by two functions ∂0 and ∂1 assigning the source (or
domain) and target (or codomain) to the arrows. The notation A f B indicates that f ∈ C1

satisfies f∂0 = A and f∂1 = B .

For these data to form a category C , in addition one needs a family of distinguished identity
morphisms A idA A, A ∈ Co and a partial composition on arrows

f ; g is defined iff f∂1 = g∂0

in diagrammatic form
A f ; g C for A f B g C

subject to the following requirements:

. Composition is comaptible with the source and target functions

(f ; g)∂0 = f∂0 and (f ; g)∂1 = f∂1

. composition is associative, i.e., (f ; g) ; h = f ; (g ; h) provided one side is defined;

. identity morphisms are neutral with respect to composition, i.e., ida∂0 = A = idA∂1

A graph/category is called

. small , if Co and C1 are sets;

. locally small , of for any two objects A,B ∈ C the arrows A f B form a set.

We will mostly be dealing with locally small categories. C
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D:GrMr 4.0.01 Definition. A graph morphism C F D from

C : C1
∂0

∂1
C0 to D : D1

∂0

∂1
D0

consists of two functions Ci Fi Di, i < 2 , that commute with the domain and codomain
functions.

A graph morphims between categories is called a functor , if it preserves the identity morphisms
and the composition of morphisms.

E:cats 4.0.02 Examples.

(0) The paradigmatic category is set with sets as objects and functions as morphisms. set is a
localy small category with a proper class of objects. Function composition is associative and
has identity functions as neutral elements.

(1) There are many categories of structured sets with structure-preserving functions as morphisms.
This notion will be made precise in Definition

D:ff
4.0.10 below. Often these can be classified as

algebraic in nature like the categories of

. mon monoids and monoid homomorphism;

. grp groups and group homomorphism;

. lat lattices and lattice homomorphisms;

. bool Boolean algebras and Boolean homomorphisms;

. ring rings and ring homomorphisms;

or topological in nature, like the categories of

. top topological spaces and continuous maps;

. met metric spaces and non-expanding maps;

. pre pre-ordered sets and order-preserving functions;

. cpo complete partial orders and continuous functions.

(2) Categories of structured sets cannot always be named after their objects, since the same class
ob objects may admit various choices of morphisms:

. rel has sets as objects, but binary relations as morphisms.

. prt has sets as objects, but partial functions as morphisms; clearly set is contained in
prt , which is contained in rel .

. Complete lattices , i.e., (small) lattices where every subset has a supremum (or least upper
bound) can alternatively be characterized by every subset having an infimum (or greatest
lower bound). For morphisms, one can require the preservation of suprema, or of infima
(notice that these requirements are not equivalent!), or of both suprema and infima. The
corresponding cateories may be called

⊔
-slat ,

d
-slat and clat , respectively.
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(3) The objects of a category do not need to be structured sets:

. Every monoid M = 〈M, ·, e〉 is a category with a single object ∗ , the morphism-set
M , and identity morphism ∗ e ∗. In particular, this includes the so-called terminal
category 1 with one object and one morphism (and one n-cell for each n > 1 ).

. Every pre-ordered set 〈P,≤〉 , where ≤ ⊆ P × P is a reflexive and transitive relation, is
a category. Objects are the elements of P , while there is at most one arrow between
any two objects: p q iff p ≤ q . This includes the category 2 with 0 > 1 the only
non-idenity arrow.

R:monord 4.0.03 Remarks.

. For every category C and each C -object C the hom-set 〈C,C〉C is automatically a monoid
under composition, with idC as neutral element.

. Replacing for a given category the non-empty homsets by 1 ∈ 2 results in a (possibly large)
pre-ordered set, the so-called “posettal collapse” of C .

The fact that certain composites of 1-cells coincide in a category is often expressed in terms of
so-called “commutative diagrms”:

A B

C D

f

k

h f

expresses the fact that f ; g = h ; k .

R:enriched 4.0.04 Remark. Alternatively, one can specify a locally small graph/category C in terms of
local so-called hom-sets 〈A,B〉C (or [A,B] , when the relevant graph/category is clear), for
A,B ∈ C0 , i.e., a set-valued C0 × C0 -matrix. These hom-sets need not be pairwise disjoint, but
we can reconstruct a global class C1 of morphisms by taking their disjoint union. Conversely, the
intersection of the ∂0 -preimage of A with the ∂1 -preimage of B specifies the hom-set 〈A,B〉C .

Instead of a global partial composition operation we then have a family of local compositions
[A,B]× [B,C] [A,C] and of distinguished morphisms 1 [A,A].

The advantage of this approach is the possibility to replace set as the category, where the
hom-sets live, by some other suitable category V . This must be equipped with a so-called
monoidal structure, i.e., a counterpart ⊗ for × that is associative and has a unit I . Allowing
hom-objects to live in V esults in so-called V -enriched categories. The first very simple example
for such a V is the ordered set 2 with objects 0 and 1 and one non-trivial morphism 0 1.
Ordered sets then turn out to be enriched over 2 . C
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D:2cat 4.0.05 Definition. A 2-category is a category enriched in Cat , with cartesian product and
I = 1 providing the required monoidal structure. A 2-functor preserves i-cells, i < 3 , as well as
their composition and their units on the nose.

Besides 2-functors there are (at least) two further reasonable morphisms between 2-categories:
lax and oplax functors C 〈F, ϕ〉 D , where the composition and units of the 1-cells do not need
to be preserved on the nose, but only up to natural transformations of the form

〈A,B〉C × 〈B,C〉C 〈A,C〉C

〈AF,BF 〉D × 〈BH,CF 〉D 〈AF,CF 〉D

〈A,B,C〉C

〈AF,BF,CF 〉D

〈A,B〉F × 〈B,C〉H 〈A,C〉F〈A,B,C〉ϕ

and

1

[C,C]

[CF,CF ]

AC

(CF )D

〈C,C〉FCϕ

in the lax case, and with reversed 2-cells in the oplax case. Concretely, in the lax case, this means
that for 1-cells A f B andB g C in C , there are well-behaved 2-cells fF ; gF 〈f, g〉〈A,B,C〉ϕ

(f ; g)F and CFD Cϕ CCF . Often we drop the 1-cell indices to simplify the notation.

Since most of the 2-categories needed in this course will be ord -enriched, the naturality
conditions above do not need to be mentioned, as they are automatically satisfied. Our main
example of lax functors will be lax monoid homoorphisms between ordered monoids.

P:common 4.0.06 Proposition. (Common constructions on categories)

. The cartesian product C ×D of two categories C and D is defined componentwise.

. Every subclass A of the object-class of a category C induces a so-called full subcategories
of C with the same hom-sets 〈A,B〉C for all objects A,B ∈ A .

Unless more is known about the elements of A there is little point in restricting the morphisms,
but we will encounter such situations shortly.

. The arrow category C→ of C has morphisms of C as objects and commutative squares as
morphisms.
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In view of the Examles in (4) above, categories provide a common generalization of monoids and
pre-ordered sets. This indicates that monoid homomorphisms and order-preserving functions
ought to generalize as well to structure-preserving morphisms between categories.

D:fun 4.0.07 Definition. A functor C F D between categories consists of

• a function C0
F0 D0 between the object classes;

• either a function C1
F1 D1 between the morphism classes such that sources and targets

are preserved, i.e.,
fF1∂0 = f∂0F0 and fF1∂1 = f∂1F0

such that composition and identity arrows are preserved, i.e.,

fF1 ; gF1 = (f ; g)F1 if f ; g is defined, and idAF1 = idAF0 for each A ∈ C0 C

R:matfun 4.0.08 Remark. Equivalently, instead of F1 one can specify a family of functions

〈A,B〉C 〈A,B〉F 〈AF,BF 〉D

and require

〈A,B〉C × 〈B,C〉C

〈A,C〉C

〈AF,BF 〉C × 〈BF,CF 〉D

〈AF,CF 〉C

〈A,B〉F × 〈B,C〉F

〈A,B,C〉C 〈AF,BF,CF 〉D

〈A,C〉F

as well as
1

〈A,A〉C 〈AF,AF 〉C

idA idAF

〈A,C〉F

This formulation of the notion of functor also works in the enriched setting, cf. Remark
R:enriched
4.0.04.C

E:funs 4.0.09 Examples.

(0) Each monoid homomorphism and each order-preserving function is a functor.

(1) Functor 1 C C can be identified with objects of C , while functors 2 C C correspond
to arrows.
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(2) The operation (−)∗ on sets of forming the “set of words” over X extends to a functor on set .
There also is a functor from set to mon that maps X to the free monoid 〈X∗, �, εX〉 , and
each function X f Y to the induces monoid homomorphism 〈X∗, �, εX〉 f∗ 〈Y ∗, �, εY 〉.
Conversely, there is a “forgetful functor” from mon to set that maps a monoid M = 〈M, •, e〉
to the set M and a monoid homomorphism to its underlying function.

(3) The power-set operation P induces functors

. from set to itself;

. from set to the category
∨

-slat of
∨
-semilattices;

. from mon to itself

. from mon to the category uqnt of unital quantales

D:ff 4.0.10 Definition. A functor A F B is called faithful/full , if all F -components

〈X,Y 〉A 〈X,Y 〉F 〈XF, Y F 〉B

are injective/surjective. A faithful functor that also is injective on objects is called an embedding .

A concrete category is a pair 〈C , U〉 consisting of a category C and a faithful functor
C | − | set . C

The notion of concrete category is intended to make precise the somewhat informal idea of a
category of structured sets and structure preserving functions as morphisms.

For general categories, the analogy with ordered sets can be carried further. Whenever we
have order-preserving functions 〈X,≤〉 f

g
〈Y,v〉, they can be compared point-wise: f v g iff

for every a ∈ X we have af v ag . In other words, the set of order-preserving functions from
〈X,≤〉 to 〈Y,v〉 is itself an ordered set. Hence we would expect the set of functors from C to
D to ba a category. We now specify the arrows in this category:

D:ntran 4.0.11 Definition. Given two functors C
F

G
D , a natural transformation F α G consists

of a family of D -arrows AF Aα AG, such that for any C -arrow A f B we have

AF AG

BF BG

Aα

fF

Bα

fG (4.0-00) DG:ntran

There are two ways how natural transformations can be composed:
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. sequentially :

C D

F

G

H

α

β

7→ C D

F

H

α;β

the two possible composites

αγ ; βδ and α ; βγ ; δ coincide.

. in parallel :

C D E

F

G

α

H

K

β 7→ C D

FH

GK

αβ

which can be expressed as the sequential composition of FH Fβ FK with FK αK GK,
or equivalently, of FH αH GK with GH Gβ GK. These latter obvious parallel
composites of (identity natural transvormations of) functors with α , respectivley, β are
known as whiskerings. C

P:funcat 4.0.12 Proposition. For any two categories C and D the functors from C to D are the
objects of a functor category [C ,D ] , which has the natural transformations between such functors
as arrows. Any functors C ′ F C and D H D ′ induces a functor [C ,D ] [F,G] [C ′,D ′]

that operates by pre- and post-composition, i.e., (C G D) 7→ (C ′ FGH D ′).

Notice that [C ,D ] will be small, if both C and D are small, but need not be locally small,
if C and D are. Since size will not be an issue in this course, we sidestep this question at the
moment.

E:transs 4.0.13 Examples.

(0) The family of inclusions X X∗ that map elements a ∈ X to singleton words over X ;
recall that X is a subset of X∗ .

(1) The family of singleton-functions X {−} XP that maps elements a ∈ X to the singleton
set {a} ⊆ X .

(2) The family of union maps (XP)P
⋃

XP that forms the union of a set of subsets of X .

(3) If C is a monoid, a natural transformation F α G is a single morphism ∗F ∗α ∗G
in D that satisfies Diagram (

DG:nattran
??). While the F -and G-images of C form sub-monoids of

[∗F, ∗F ] and [∗G, ∗G] , respectively, ∗α in general does not induce a monoid homomorphism
between these.
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(4) For any category C the functor category [1,C ] is essentially the same as C . In this context
natural transformations are just arrows in C .

(5) For any category C the functor category [2,C ] is the same as the arrow-category C→ of
Proposition

P:common
4.0.06. Here natural transformations are pairs of morphisms that make a specific

square commutative:

0F 0G

1F 1G

0α

<F

1α

<G

There are obvious domain-and codomain-functors from [2,C ] to C that map the square
above to 0F 0α 0G, respectively, 1F 1α 1G. More precisely: when we identify C with
[1,C ] and 2 with [1,2] , the relation 0 < 1 produces a natural transformation

[2,C ] [1,C ]

[0,C ]

[1,C ]

[< .C ]

T:minch 4.0.14 Theorem. The sequential and parallel composition of natural transformations of Defini-
tion

D:ntran
4.0.11 satisfy the middle interchange condition, i.e., in the following situation

C D E

F

G

H

α

β

L

L

M

γ

δ

the two possible composites agree:

C D E

F

H

α ; β

J

M

γ ; δ and C E

FJ

GL

HM

αγ

βδ

P:2cat 4.0.15 Proposition. Small categories as objects together with the functors as 1-cells and the
natural transformations as 2-cells form a 2-category cat , i.e., a category enriched over itself, cf.
Remark

R:enriched
4.0.04.
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R:bicat 4.0.16 Remark. Replacing hom-sets by hom-categories opens up another direction for generaiza-
tion: the unit- and associativity laws for composition of 1-cells can be relaxed to only hold up
to invertible morphisms (or isomorphism, see below), that are well-behaved in a technical sense
known as “coherence”. This relaxation results in “weak 2-categories”, also known as “bi-categories”.
The only bicategory we will encounter in this lecture that is not a 2-category will probably be
spn , cf., Definition

D:spn
4.7.00, a generalization of rel . C

4.1 Special morphisms
SS:spmor

As the prototypical category is set , with functions as morphisms, it is no surprise that the
notions of injectivity and surjectivity have been generalized to morphisms in arbitrary categories.
As it turns out, the aspects of cancellability and invertibility lead to different generalizations.

D:monepi 4.1.00 Definition. A morphism B g C in a category C is called a

. monomorphism, or mono for sort, if the function

[A,B] [A, g] [A,C]

defined by post-composition with g is injective for every C -object A . In other words,
g is post-cancellable in the sense that r ; g = s ; g impplies r = s for any C -morphisms
A

r

s
B;

. section, also known as split mono, if g has a right inverse C h B satisfying g ; h = idB .

Dual notions: epimorphism, pre-cancellable; retraction or split epi .

If g is invertible on both sides, it is called an isomorphism, or iso for short.

It is easy to see that for an iso B g C a left inverse C f B and a right inverse C h B

have to agree. Moreover, any isomorphism is or course both epi and mono, as the pre- and
post-compositin functions are bijective. Hovever, the converse need not be true:

E:ring 4.1.01 Examples.

(a) The inclusion of the natural numbers N into the integers Z is an injective epi, but not an
iso in the category mon of monoids. Notice that 〈N,+, 0〉 is a free monoid, while 〈Z,+, 0〉
is a free group on a singleton set. Consider different monoid-homomorphisms Z f

g
M . The

images of Z under f and g automatically are groups, and hence f and g are uniquely
determined by the values of 1 ; f and 1 ; g , respectively, which by hypothesis are different
elements of M . But then also 1 ; i ; f 6= 1 ; i ; g , which implies i ; f 6= i ; g .

(b) The inclusion of the integers Z into the rationals Q is an injective epi, but not an iso in the
category ring of rings.
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Since morphisms that are both mono and epi can fail to be iso, one can ask for the least
strengthening of the notions of mono and epi that will result in isos in the presence of the
unaltered other property:

D:strong 4.1.02 Definition. An epimorphism A e B is called

(0) extramal epi , if e does not factor through a proper mono, i.e., whenever e = f ; m with m

mono, then m is already iso;

(1) strong epi , if for every diagram of the form

A

B

C

D

e m

f

g

(4.1-00) EQ:strong

with m mono there exists a unique diagonal B d C making both triangles commute:

A

B

C

D

e m

f

g

d

Dual Notions: extremal mono; strong mono.

P:strong 4.1.03 Proposition.

(0) Every split epi is strong.

(1) A morphism is iso iff it is mono and strong epi.

(2) Every strong epi is extremal.

Proof.

(0) Suppose e in Diagram (
EQ:strong
4.1-00) is split with left-inverse B h A. We claim that d := h ; f

is the desired diagonal. The lower triangle commutes because of

h ; f ; m = h ; e ; g = g

while the upper triangle commutes since m is mono and

f ; m = e ; g = e ; h ; f ; m

copyright: Jürgen Koslowski, TU Braunschweig, 2018-02-12



4.1 Special morphisms 41

(1) An iso is both mono and split epi, hence by (0) mono and strong epi. Conversely, set e = m

in Diagram (
EQ:strong
4.1-00), and use identities for the horizontal morphisms. Then d is left- and

right-inverse to e .

(2) Suppose in Diagram (
EQ:strong
4.1-00) D = B and g = idB . Then the diagonal d is a left-inverse for

m . Therefore m is mono and split epi, thus by (0) mono and strong epi, and by (1) iso.

E:insurj 4.1.04 Example. In set every surjective function is both an epi and a retraction. On the other
hand, while all injective functions are monos, only those wth non-empty domain are split mono:
the inclusion of ∅ into an nonempty set cannot have a right-inverse. C

P:2of3 4.1.05 Proposition. If B g C h D is mono, so is g .

Proof. If A
r

s
B are distinct, so are r ; g ; h and s ; g ; h , which forces r ; g 6= s ; g .

In most categories of structured sets the monos turn out to have underlying functions that are
injective, however the underlying functions of epis need not be surjective, as Example

E:ring
4.1.01 shows.

Furthermore, isos in such categories have to be bijective, however bijective homomorphisms may
not be isos: just consider the identity function from a discretely ordered set into an indiscretely
ordered one; it only preserves order in one direction.

D:subobject 4.1.06 Definition. Monos into an objcet C are calles sub-objects of C .

Dual notion: super-object .

R:super 4.1.07 Remarks.

(a) Some authors reserve the term "sub-object" for equivalence classes of monos into C , where
two monos into C are equivalent, if they differ by an isomorphism in the domain. This
point of view is important when size questions arise, e.g., whether all objects have a set of
sub-objects, or if proper classes of sub-objects can occur. To avoid speaking expicitly about
equivalence classes, phrases like “up to isomorphism” or “essentially” are being employed.

(b) The terminology of the dual of a sub-objects is not uniform in the literature. While some
authors use the term “quotient” for this purpose, otherse reserve this term for a more
specialized notion in connection with a categorical version of equivalence relation (called
“congruence”, see below). In that case I’ve seen the term “co-sub-object” being employed,
which strikes me as rather awkward. So for these notes we will use “super-object” instead.

(c) For many applications the notions of monomorphism and of epimorphism are too weak, while
the notions of split mono/epi are too strong. Hence one finds a number of intermediate
notions that are of importance (eg, “strong”, “regular”, “extremal”, “effective”,. . . ). In Section
SS:cong
4.7, we will need to consider regular epis.
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E:sub 4.1.08 Examples.

. In set subobjects may be identified with subsets. In fact, every function A f C factors
through a smallest subset of C , namely the image f [A] ⊆ C .

On the other hand, super-objects or quotients in set correspond to set-indexed families of
sets: if B g C is surjective, we have a C - indexed family of sets, namely the pre-images of
the elements of C .

. In Cat the notion of sub-category needs further qualification. The full subcategory generated
by a sub-set (or sub-class) of A ⊆ C -Ob , has the elements of A as objects and the
corresponding hom-sets of C as hom-sets. E.g., the category ab of abelian groups is a
full subcategory of the category grp of groups. However, the category sgr of semi-groups
yields an example of a non-full subcategory , as every monoid is a semi-group, but not every
semi-group-homomorphism between monoids is a monoid homomorphism; it may fail to
preserve the neutral element.

Another example is given by
⊔
-semilattices, which are, of course, t-semilattices, but not all

t-slat -morphisms preserve arbitrary suprema. Moreover,
⊔

-slat is a non-full sub-category
of clat , the category of complete lattices: the objects coincide, but in the first case morphisms
are only required to preserve suprema, while in the second case suprema and infima are to be
preserved.

The notions of monomorphism and epimorphism admit generalizations to families of morphisms
with common domain, resp., codomain. Their relevance will become clear in Section

SS:limcol
4.6.

D:moso 4.1.09 Definition. A family of morphism with common domain is called a source. If for any
different parallel morphisms into the source’s domain the composite sources differ, we have a
mono-source.

Dual notion: sink , epi-sink .

4.2 Monads
SS:mnd

The key observation in Subsection
SS:inter
0.1 was that the free monoid functor and the power-set functor

on set , carry extra structure that much resembles a monoid. Here come the official definitions.

D:monad 4.2.00 Definition. A monad T = 〈T, η,mu〉 on a category C consists of an endo-functor
C T C equipped with natural transformations TT µ T and idC

η T subject to
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. µ is associative, i.e.,

TTT TT

TT T

Tµ

µT

µ

µ

. η is left- and right-neutral with respect to µ , i.e.

T TT T

T

Tη ηT

idT idTµ

Dual notions: co-monad Q = 〈Q,Q ϕQ idC , Q
νQ QQ〉 with a co-unit ϕQ and a

co-multiplication νQ .

E:monad 4.2.01 Examples.

(0) Further monads in the vein of the free monoid monad (−)∗ and the power-set monads P

and F are indicated in Subsection
SS:SBT
4.11.

(1) For every finitaly algebraic theory (defined by a finite signature Σ of function symbols with
finite arity) the category of Σ-algebras arises as the the category of EM-algebras for a suitable
monad.

(2) Algebraic theories with infinite signatures need not give rise to monads: e.g., the category
clat of complete lattices does not arise in this fashion (the “free complete lattice” on three
generators has a proper class of elements and hence does not exist over set ).

(3) Compact Hausdorff spaces arise as EM-algebras for the ultrafilter monad, another example
for a signature with a function-symbol of infinite arity.

E:comon 4.2.02 Examples.

(0) For any monad T = 〈T, ηT , µT 〉 on a category C the composition CT UT

C FT

CT

automatically yields a co-monad on CT .

R:enrMon 4.2.03 Remark. Of course, the definition of monad makes sense in any 2-category:

. Monads in rel are just pre-orders, i.e., reflexive and transitive relations on a set.
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. Monads in the suspension of set are precisely the monoids.

. Monads in the suspension of ab (with the tensor product of abelian groups as 1-cell
composition) are precisely the rings.

D:em 4.2.04 Definition.

(0) Given an endo-functor C T C , an algebra for T is a pair 〈X,XT ξ X〉 consiting of a
C -object X and a so-called structure morphism ξ . Hence T -algebras are objects of the
arrow category C→ , which coincides with the functor category [2,C ] .

If 〈Y, ζ〉 is another algebra for T , a C -morphism X f Y is called an algebra-homomor-
phism, if it preserves the structure maps, i.e.,

XT Y T

X Y

fT

ξ

f

ζ (4.2-00) EQ:alghom

The corresponding category usually will be a non-full subcategory of C→ = [2,C ] , since
not neccessaily all commutative squares involving two T -algebras arise as algebra homomor-
phisms.

(1) In case of a monad T = 〈T, η, µ〉 on C , an Eilenberg-Moore algebra, or EM-algebra for
short, is an algebra 〈X,XT ξ X〉 for T , subject to two compatibility conditions with η

and µ , respectively:

X XT

X

Xη

idX
ξ and

XTT XT

XT X

ξT

Xµ

ξ

ξ

Notice that 〈XT,XTT Xµ XT 〉 is always an EM-algebra, the so-called free EM-algebra
over X . Furthermore, the structure map ξ of an EM-algebra 〈X, ξ〉 by definition is always
an algebra homomorphism from the free EM-algebra over X into 〈X, ξ〉 .

Dual notions: co-algebra 〈X,X ζ XT 〉; coalgebra homomorphism; Eilenberg-Moore coalgebra
or EM-coalgebra.

copyright: Jürgen Koslowski, TU Braunschweig, 2018-02-12



4.3 Distributive laws 45

P:emcat 4.2.05 Proposition. The EM-algebras and the algebra-homomorphisms for a monad T over
C form a category CT . Moreover, the endofunctor C T C factors through CT by via

CT

C C

FT UT

T

where FT maps X f Y in C to the algebra-homomorphism

XTT Y TT

XT Y T

fTT

Xµ

fT

Y µ

between the free algebras over X , and Y , respectively. Conversely, UT maps an algebra-
homomorphism (

EQ:alghom
4.2-00) to the underlying C -morphism X f Y .

4.3 Distributive laws
SS:dis

Given two monads S = 〈S, ηS , µS 〉 and T = 〈T, ηT , µT 〉 on the same category C , the question
arises, whether the composite functor C S C T C carries a monad structure as well. The
problem is to define a meaningful multiplication STST ST . This can fail in general, but
in the presence of a natural transformation TS δ ST satisfying suitable axioms, the original
multiplications SS µS S and TT µT T can be brought to bear, as indicated in the following
diagram:

C

C C

C C C
S T

S

T

S T

S

T
µS µT

δ

The axioms for δ are chosen such that the composite 2-cell above yields a monad together with
the obvious unit idC = idC idC

ηSηT ST , namely:

TSS STS SST

TS ST

δS Sδ

TµS µST

δ

and
TTS TST STT

TS ST

Tδ δT

µTS SµT

δ
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as well as
STS

TS ST

TηS ηST

δ

and

TST

TS ST

ηTS SηT

δ

the reader is encouraged to check that the unit and multiplication above indeed provide a monad
structure on ST .

4.4 Adjunctions
SS:ADJ

One of the fundamental notions of category theory is the notion of adjunction, due to Daniel
Kan in 1958. It may be seen as a weakening of the notion of inverse functions in set . The only
sensible way that a function X f Y can have an inverse in set is to have a function Y g X

such that f ; g = idX and g ; f = idY . In a 2-category, where the hom-sets are themselves
categories, these equality requirements may be weakened to the existence of 2-cells mediating
between f ; g and idX , respectively, g ; f and idY . Also recall the notion of a generalized
inverse matrix Mg in linear algebra that satisfies MMgM = M . I

We start with the abstract concept available in any 2-category, which takes a diagrammatic
form that is easy to memorize (we hope).

D:adj 4.4.00 Definition. Two 1-cells A f B and B g A are called adjoint , if there exist 2-cells

A A

B B

A

f g

B

η
and

A A

B B

A

fg

B

ε

subject to the following axioms:

A A

B B

A

f g

B

fη
ε =

A

Bf

f

id

A A

BB

A

f g

B

g η
ε =

A

B g

g

id

Notation: f a g ; f is called left adjoint and g right adjoint , while η and ε are called the unit ,
respectively co-unit of the adjunction.
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E:adj 4.4.01 Examples.

(0) Since the 2-category rel of sets, (binary) relations and inclusions is is locally partially ordered,
the very existence of unit and co-unit inclusions characterizes adjunctions; the compositions
then automatically yield the required equalities: hence relations A R B and B S A

are adjoint, if

A A

B B

A

R S

B

⊆

and

A A

B B

A

RS

B

⊆

The first inclusion says that R is total , while the second inclusion forces R to be single-valued .
This characterizes the left adjoint relations as precisely the functions, while the right adjoint
relations are precisely the duals of functions, i.e., S = Rop above.

(1) Adjunctions in Cat can also be described in somewhat differernt terms: given functors
C F D and D G C , we have F a G provided there is a family of bijections between
the hom-sets 〈A,BG〉C and 〈AF,B〉D that is natural in A ∈ C and B ∈ D . In other
words, there is a natural isomorphism

A op ×B set

[−F,−]

[−,−G]

ι

(The position of F and G in these hom-sets/functors indicates which of them is left-, resp.
right-adjoint.)

The images of the identities on AF in D , resp. the pre-images of the identities on BG in
C yield the components A Aη AFG of the unit and BGF Bε B of the co-unit.

Conversely, given C η FG and A ∈ C as well as B ∈ D , every C -morphism A f BG

admits a unique D -morphism AF f̃ B such that f̃G extends f along Aη :

A AFG AF

BG B

Aη

∀ f
f̌G ∃! f̌

(4.4-00) EQ:Aeta

Namely, f̌ := fF ; Bε .

Alternatively, starting with the co-unit GF ε D and objects A and B as above, every
D -morphism AF g B induces a unique C -morphism A ĝ BG such that ĝF lifts g
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along Bε :

BBGFBG

AFA

Bε

∀ g
ĝF∃! ĝ (4.4-01) EQ:Beps

Namely, ĝ := Aη ; gG .

(2) Every monad T = 〈T, ηT , µT 〉 on C induces an adjunction between the free functior
C FT

CT into the category of EM-algebras, and the forgetful functor CT UT

C .

4.5 Extensions and liftings
SS:ExLif

We have seen that many important notions of category theory, like monads and adjunctions, can
in fact be formlized in any 2-category. Another such concept, Kan-extensions (due to Daniel
M. Kan, 1960) can be abstracted in a similar fashion and provides a very economical, if slightly
abstract approach, that subsumes many other notions. MacLane

MacLaneS71
[Mac71] has a section entitled

“All Concepts Are Kan Extensions”, where he claims

The notion of Kan extensions subsumes all the other fundamental concepts of category
theory.

Here we follow the introduction to Street and Walters
StWa78
[SW78]. Consider a 2-cell in a 2-category

B .

A B

A C

A

sr

t

ϕ (4.5-00) EQ:exlif

D:ExLif 4.5.00 Definition. Diagram (
EQ:exlif
4.5-00) exhibits the pair 〈s, ϕ〉 as a right extension of A t C

along A r B, if for any 1-cell B x C, pasting, i.e.. 2-cell composition, with ϕ at s is
a bijection between the hom-sets 〈r ; x, t〉[A,C] and 〈x, s〉[B,C] . More precisely, any 2-cell
r ; u ψ t uniquely factors through ϕ

B

A C

A

vr

t

ψ =

B

A C

s

v
r

t

ϕ ψ̂ (4.5-01) EQ:rext0
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Alternatively, this universal property may be depicted as

tr ; ss

r ; vu

ϕ

∀ ψ
ψ̂ ; r∃! ψ̂ (4.5-02) EQ:rext1

with a unique 2-cell x ψ̄ s.

The right extension 〈s, ϕ〉 of t along r is called absolut , if for every 1-cell C w D the
pair 〈s ; w,ϕ ; w〉 is a right-extension of t ; w along r .

Dual notion: Diagram (
EQ:exlif
4.5-00) exhibits the pair 〈r, ϕ〉 as a right lifting of A t C through

B s C; absolute right lifting .

Opposite notion: If the 2-cell ϕ in Diagram (
EQ:exlif
4.5-00) is reversed, it can exhibit the pair 〈s, ϕ〉

as a left extension of A t C along A r B, resp., the pair 〈r, ϕ〉 as a left lifting of A t C

through B s C. The diagrams for left-liftings look like

B

A C

A

su

t

ψ =

B

A C

r
u

s

t

ϕψ̌ (4.5-03) EQ:rext2

or, alternatively

t r ; s r

u ; s u

ϕ

∀ ψ
ψ̌ ; s ∃! ψ̌

(4.5-04) EQ:rext3

Absolute left extensions/liftings are preserved by post/pre-cmposition with 1-cells.

R:exlif 4.5.01 Remarks.

(0) One can think of the right extensions and liftings as the “best” approximation to a commutative
triangle “from below”, depending on whether the given two 1-cells have a common domain, or
a common codomain. Similarly, left extensions and liftings are “best” approximations “from
above”. This intuition will be supported by examples below.

(1) In case that A r B exhibits another pair 〈s′, ϕ′〉 as right extension of t along r , then
s and s′ will be isomorphic as objects of the hom-category [B,C] : the definition induces
mutually inverse 2-cells linking s and s′ .
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(2) Consider A r B and C as fixed, while A t C as well as B u C can vary. Comparing
Diagram (

EQ:rext1
4.5-02) with Diagram (

EQ:Beps
4.4-01) of Example

E:adj
4.4.01(1) shows that the existence of

right extensions 〈s, ϕ〉 along A r B for all 1-cells A t C can be expressed equivalently
by saying that the functor

[B,C] [r, C] [A,C]

that operates by pre-composing with r is left adjoint. The corresponding right adjoint maps
t to s , the right-extension. Let us denote this functor by

[A,C] r .− [B,C]

and refer to it as pre-residuation with respect to r . Another commen notation is r\− .

(3) The existence of all right liftings 〈r, ϕ〉 through B s C for all 1-cells A t C amounts
to the functor

[A,B] [A, s] [A,C]

that operates by post-composition with s being left adjoint. The corresponding right-adjoint

[A,C] −/ [A,B]

will be called post-residuation with respect to s , and can also be written as −/s .

(4) the existence of all left-extensions along r , resp., left-liftings through s means that the
functors [r, C] and [A, s] are right-adjoint, i.e., have left-adjoints. (I’m not aware of
terminology corresponding to “residuation” in this case.)

D:closed 4.5.02 Definition. The 2-cateogory B is called pre-closed/post-closed , if pre/post-composition
with every 1-cell is left adjoint, i.e., all pre/post-residuations exist. B is called closed , if it is pre-
and post-closed.

R:pola 4.5.03 Remark. In a closed bicategory B the bijective correspondences

r t / s

r ; s t

s r . t

automatically induces further adjunctions

[A,B] [B,C]op

t /−

− . t

` as well as [B,C] [A,B]op

− . t

t /−

` (4.5-05) EQ:pola

that are known as polarities.
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E:relclosed 4.5.04 Example. rel is closed: given a relation A R B, for A T C and B S C the
pre- and post-residuations are given by

〈b, c〉 ∈ R . T iff ∀a ∈ A. 〈a, b〉 ∈ R⇒ 〈a, c〉 ∈ T
〈a, b〉 ∈ T / S iff ∀c ∈ C. 〈a, c〉 ∈ T ⇐ 〈b, c〉 ∈ S

In other words, we have adjunctions

[B,C] [A,C]

R .−

[R,C]

` as well as [A,B] [A,C]

− / S

[A,S]

` (4.5-06) EQ:reladj

and polarities

[A,B] [B,C]op

T /−

− . T

` as well as [B,C] [A,B]op

− . T

T /−

` (4.5-07) EQ:relpola

Interesting things happen when for, say, B S C we chose A = 1 , as then [1, B] and [1, C]

essentially are the power-sets of B and C , respectively. Besides the adjunction on the right
of (

EQ:reladj
4.5-06), by considering the dual relation C Sop

B we obtain a second adjunction in the
opposite direction:

[1, B] [1, C]

− / S

[1, S]

` as well as [1, C] [1, B]

− / Sop

[1, Sop]

` (4.5-08) EQ:1reladj

If, moreover, S is left adjoint, i.e., a function B g C, then g a gop and one might suspect
that this implies [1, g] a [1, gop] . Indeed, this is the case, hence the two adjunctions above can
be combined into

[1, B] [1, C]

− / gop

[1, gop] = − / g

[1, g]

a

`

∼= BP CP

g∀

g−1

g∃

a

`

∼= [B, 1] [C, 1]

g .−

[g, 1] = gop .−

[gop, 1]

a

`

In the middle g−1 denotes the inverse image function, which turns out to be left and right adjoint.
The other two functions are given by

V s∃ := { c ∈ C : ∃b ∈ B. b ∈ V ∧ bs = c } = { c ∈ C : V ∩ cs−1 6= ∅ }
V s∀ := { c ∈ C : ∀b ∈ B. bs = c ⇒ b ∈ V } = { c ∈ C : cs−1 ⊆ V }

(4.5-09) EQ:fexfor
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The set V s∃ is usually referred to as the direct image of V under s , or the s-image of V .

On the right we are using the dualization (−)op on rel that maps 1 V B to B V op

1.
Hence 1 V B g C turns into C sop B V op

1.

Hence the self-duality of rel is responsible for the existence of many different descriptions of
essentially the same chain of adjunctions.

[HW] What happens, if in the polarities above the set B is chosen to be 1 ? C

E:closed 4.5.05 Examples.

(0) Notice that set as a locally discrete 2-category sitting inside rel is not closed. While the
residuations of two functions always exist, they may be proper relations. Even commutative
triangles of functions need not correspond to pre- or post-residuations, as the uniqueness
requirement coud be violated.

(1) Although set as a locally discrete category is not closed, the suspension set-Σ of set is
closed: this 2-category has a single object ∗ , sets as 1-cells and functions as 2-cells. In
particular, set-Σ is not locally small. The composition of 1-cells is given by cartesian product
× , with neutral 1-cell 1 . Usually the suspension-view is suppressed and set is directly
called cartesian closed . Due to the symmetry of × the pre- and post-residuations agree with
the function-space construction.

Claim. For every set X , the functor set X ×− set is left-adjoint, with right adjoint the
function-space functor set [X,−] set .

The Y -component of the unit set η [X,X×−] maps y ∈ Y to the function X X×Y
with graph X×{y} . On the other hand, the y -component of the co-unit X × [X,−] ε set

is the evaluation X × [X,Y ] evX Y that maps 〈x, f〉 to xf .

(2) Much of “categorical topology” was motivated by the fact that top , the category of topological
spaces and continuous functions fails to be cartesian closed, i.e., fails to have good function
spaces. Various related categories that do have this property have been constructed.

(3) Algebraic categories like grp , ab , or ring usually are not closed with respect to the
cartesian product. Sometimes, there is another product, usually called tensor product ⊗
with unit I , for which closedness can be established, e.g., for ab .

(4) As the comparison between set and rel shows, enlarging the hom-sets can recover closedness.
While rings with ring homomorphisms do not form a closed category, rings with modules do.
In general, (small) matrix-categories over a rig (or semi-ring) tend to be closed.

Also cat (and Cat ) with functors as 1-cells fails to be closed, but the use of so-called
pro-functors A B, i.e., functors A op ×B set as morphisms instead of functors
does yield a closed 2-category. (Notice that every functor A B induces a pair of adjoint
profunctors between the same categories, but not all left adjoint profunctors are functors.)
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(5) The operation of cartesian product can even be available in 2-categories, hence one can
consider the notion of cartesian closedness in this setting as well. The category ord of
pre-ordered sets and order-preserving functions is cartesian closed, just as is cat .

(6) 2Cat , with 2-categories as objects and 2-functors that preserve the composition of 1-cells
and both compositions of 2-cells, viewed just as a category (disregarding any the higher-
dimensional structure) is cartesian closed. But 2Cat is also closed with respect to the
shuffle-product , also known as the funny tensor . This is the only other monoidal closed
structure on 2Cat besides × and has the same unit 1 .

T:adj 4.5.06 Theorem. For 1-cells A f B g A and a 2-cell g ; f ε B the following are
equivalent:

(a) 〈f, ε〉 is an absolute right extension of B along g ;

(b) 〈f, ε〉 is a right extension of B along g that is preserved by g ;

(c) ε is the co-unit of an adjunction f a g .

Proof.

( a )⇒ (b ): Trivial.

( b )⇒ ( c ): Let A η f ; g be the pre-image of the canonical 2-isomorphism f̄ ;A B; f̄

under pasting of ε ; g at f ; g . Pasting A; f (ηf); (fε) f ;B with ε at f modulo structural
isos results in ε , which establishes ε and η as the counit and unit of an adjunction f a f̄ .

( c )⇒ ( a ): The desired bijection between 2-cells of the form p f ; q and 2-cells of the form
f̄ ; p q is obtained by pasting with ε at f and with η at f̄ , respectively.

C:adj 4.5.07 Corollary. The unit of an adjunction f a g is both an absolute left lifting and an
absolute left extension, while the counit is both an absolute right lifting and an absolute right
extension. In other words, f has all left extensions and all right liftings, while g has all left
liftings and all right extensions. In particular, this implies that for any B-object D we have the
following adjunctions

[D,A] [D,B]

− / g

[D, g] = − / f

[D, f ]

a

`

and [A,D] [B,D]

f .−

[f,D] = g .−

[g,D]

a

`

T:adjpresext 4.5.08 Theorem. Post-composition with left/right adjoints preserves left/right extensions.
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Proof. Suppose Diagram (
EQ:exlif
4.5-00) exhibits 〈s, ϕ〉 as right extension of t along r , and C g D

is right adjoint with left adjoint D f C. We need to show that pasting with ϕ ; g at s ; g is a
bijection between 〈k, s ; g〉[B,D] and 〈r ; k, t ; g〉[A,D] . Given a 2-cell r ; k κ t ; g, we have

D

C

B

A
t

r

k

g
κ =

D D

CC

B

A
t C

r

k D

g
g fκ ε

η
=

D D

C

B

A
t

r

k

s

D

g
f

ϕ

ψ
η

where ψ is the uniquely determined 2-cell by which κf ; tη factors through ϕ . Hence κ̂ :=

kη ; ψg is a candidate for the image of κ . Any other such candidate k ω sg composed with
s ; ε must yield ψ , hence ω = κ̂ .

4.6 Limits and co-limits
SS:limcol

D:conical 4.6.00 Definition. In cat and Cat 2-cells of the form

1

D A

L!

J

λ resp.

1

D A

K!

J

κ (4.6-00) EQ:limcol

are called cones/co-cones of the functor J . If they have the universal property of a right/left
extension, they are called limits/colimits. The category A is called complete/co-complete, if it
has all small(!) limits/co-limits.

R:limcol 4.6.01 Remarks.

(0) The composition and units of D are irrelevant for these notion; it suffices to use graphs D

instead of categories, and graph-morphisms J instead of functors. This is indicated by calling
D J A a diagram of shape D in A . The notion of natural transformation still makes
sense for diagrams. Diagrams of shape D can always be extended uniquely to functors with
the free category over D as domain, if needed.

(1) Think of cones as “upper bounds” and of co-cones as “lower bounds” of the diagram J .

(2) Limits and co-limits are usually only unique up to isomorphism. Hence it is misleading to talk
about “the” limit or co-limit of a diagram. There do not even have to be canonical choices.
In set this is most easily seen with disjoint unions: there is no canonical way to disjointify
two sets. But this also applies to the cartesian product, as there are many ways to realize the
notion of ordererd pair.
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(3) Associated with every cone/co-cone is a source/sink (cf., Definition
D:moso
4.1.09), which results

from pre-composing J with the inclusion of the discrete category D-Ob into D .

(4) In the V -enriched case the unit I for the tensor product need not be a terminal object
of the category V , i.e., an object that acceppts a unique morphism from any object of
V . In that case more general types of limits/co-limits are needed for a useful notion of
completeness/co-completeness (weighted limits/colimits).

The following useful result follows directly from the definition:

P:limoso 4.6.02 Proposition. For every limit the induced source is a mono-source, while for every co-limit
the induced sink is an epi-sink.

By abuse of notation this will be abbreviated to “every limit is a mono-source”, and dually,
“every co-limit is an epi-sink”.

Size considerations play an important role with regard to (co-)limits:

D:complete 4.6.03 Definition. A category is called finitely complete, if it has all limits of finite diagrams,
and complete, if it has all limits of small diagrams.

Requiring (co-)limits of larger, i.e., class-sized diagrams to exist causes the category to
collapse:

T:clat 4.6.04 Theorem. A locally small category with all limits or all colimits is a complete lattice.
The same is true for small categories with all small limits or all small colimits.

Of course, this does not rule out the existence of some large (co-)limits in non-trivial categories.

According to the “shape” of the diagram D we distinguish various special limits and colimits:

E:limcol 4.6.05 Examples.

(0) If D is discrete, we have products/co-products; notice, the qualification “cartesian” works in
most categories of structured sets, but may be meaningless in other settings. Notice thet the
souce of projections always is a mono-source.

(1) If D = 0
f

g
1, we obtain equalizers/co-equalizers. Truly relevant for equalizers is only the

A -morphism into 0J , and this is always mono, while for coequalizers the morphism out of
1J is always epi.

(2) If D is a cospan 1 f 0 g 2, we obtain pullbacks as limits, but no interesting colimits
(why?). The case of fJ = gJ will be of interest in conncection with congruences and such
pullbacks are also known as kernel pairs.
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(3) If D is a span 1 f 0 g 2, we obtain push-outs as colimits, but no interesting limits.
Push-outs in case of fJ = gJ are called co-kernel pairs.

(4) If A is an ordered set, then limits/colimits turn into infima/suprema of the image of D ,
i.e., a certain subset.

The fact that coequalizers are epi is the basis to define an important class of epimorphisms:

D:regepi 4.6.06 Definition. An epimorphism B g C is called regular , if it arises as coequalizer of
some parallel pair A

r

s
B of morphisms.

Dual Notion: regular mono.

P:regstr 4.6.07 Proposition. In any category C we have:

(0) Every split epi is regular.

(1) Every regular epi is strong.

(2) If C has pullbacks, every extremal epi is strong.

Proof.

(0) If A e B has a left-inverse B s A, then idA ; e = e = (e ; s) ; e . We claim that e is a
coequalizer of A

idA

e ; s
A. Consider A f C with idA ; f = f = (e ; s) ; f . By hypothesis

e factors through f via e ; s . Suppose f = e ; g for some B g C. Now e ; g = f implies
g = s ; e ; g = s ; f , hence s ; f is the only possibility for e to factor through f .

(1) Suppose e in Diagram (
EQ:strong
4.1-00) is a coequalizer of Z

u

v
A. Since m is mono, we have

u ; f = v ; f , hence the universal property of the coequalizer induces a diagonal d that makes
the upper triangle commute. By Proposition

P:limoso
4.6.02 e is epi and hence the lower triangle

commutes as well.

(2) If C has pullbacks, form the pullback of Diagram (
EQ:strong
4.1-00). Then e factores through the

pullbck of m , which is also mono. If e is an extremal epi, the pullback of m has to be iso,
which yields the desired diagonal.

P:monker 4.6.08 Proposition. In any category C the following are equivalent:

(a) A f B is mono;

(b) f has a kernel pair of the form 〈q, q〉 ;

(c) 〈idA, idA〉 is a kernel-par of f .

Proof.
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( a )⇒ (b ) Trivial.

( b )⇒ ( c ) Consider the following diagram:

Q

A

Q A

A B

q

q f

f

idA

idA

q

q

q

u

where the inner square is a pullback. This induces a unique A u Q that is left-inferse to
Q q A. Therefore u is split mono and q is split epi. As the outer triangles commute
trivially, q ; u and idQ both make the upper and lower composite triangles commute and
thus agree. Hence q is split mono while u is split epi. Therefore q and u are mutual
inverses, which shows that the middle square is a pullback as well.

( c )⇒ ( a ) Trivial.

E:compl 4.6.09 Examples.

. set is complete and cocomplete.

. rel has all small products, and by self-duality all small coproducts, but does not have all
(co-)equalizers.

. In categories of structured sets with structure-preserving functions as morphisms limits can
usually be constructed as for the underlying sets, while colimits often are more complicated.
This applies, for instance, to categories of EM-algebras for monads on set . In particuar, the
coproduct of two monoids M = 〈M, ·, e〉 and N = 〈N, ∗, i〉 is not their disjoint union, not
even with the neutral elements identified, but rather the free monoid on M +N modulo all
relations that hold in M nd in N .

C:limcol 4.6.10 Proposition. Left/right adjoint functors in Cat preserve colimits/limits, while left/right
adjoint order-preserving functions in pos preserve suprema/infima.

Proof. This is an immediate consequence of Theorem
T:adjpresext
4.5.08.
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E:exrules 4.6.11 Example. Recall the laws for exponentiation of numbers:

1 = c0 , ca · cb = ca+b and (ca)b = ca·b and 1a = 1 , (b · c)a = ba · ca

There are similar rules when it comes to function-sets. Writing CA instead of [A,C] or 〈A,C〉set ,
we have

1 ∼= C∅ , CA×CB ∼= CA+B and
(
CA
)B ∼= CA×B and 1A ∼= 1 , (B×C)A ∼= BA×CA

Where do these rules come from? For any set C , the functor [−, C] is self-adjoint, i.e., left
adjoint from set to setop , and right adjoint from setop to set . Both properties imply that
co-limits in set are mapped to limits in set . In particular,

[∅, C] ∼= 1 and [A+B,C] ∼= [A,C]× [B,C]

which are the first two laws above, albeit in differernt notation.

The third law arises from the adjunction A×− a [A,−] , since the co-unit A× [A,C] ev C

induces a bijection between [A×B,C] and [B, [A,C]] . In addition, [A,−] being right adjoint
implies

[A, 1] ∼= A and [A,B × C] ∼= [A,B]× [A,C]

Finally, A×− being left adjoint implies that ∅ is absorbing wrt. × and the distributivity of ×
over + , i.e.,

A× ∅ = ∅ and A× (B + C) ∼= A×B +A× C

which yields the other laws of arithmetic linking addition and multiplication. C

4.7 Congruences
SS:cong

Any function B g C in set induces an equivalence relation on the domain B by identifying
elements with the same g - image. In fact, every equivalence relation on sets arises in this fashion.

For a concrete category 〈C , | − |〉 consider the equivalence relation ∼g induced by a
homomorphism B g C. Under what conditions does the set |B|∼g of equivelence classes carry
a C -structure that turns the surjective function |B| q |B|∼g into a C -morphism with domain
B ? This would warrant calling ∼g a congruence.

Provided the following conditions are satisfied

. the factorization in set of |g| into a surjection e followed by an injection m determines a
subobject g-img of C ;

. any bijection into the set |g-img | admits a lifting to an isomorphisms with codomain g-img ;
this proerty is sometimes called transprotability .
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the set of equivalence classes is guaranteed to carry a C -structure isomorphic to g-img . But
even without transportability the surjective C -morphism B e g-img deserves to be called a
quotient in C .

Of course, not every equivalence relation on |B| ha to be a congruences with respect to C .

If C is an abstract category without (obvious) faithful functor into set , the notions of
congruence and quotient are somewhat more subtle. First we need to ensure that C admits a
reasonable calculus of spans and relations.

D:spn 4.7.00 Definition. Let C be a category with pullbacks. The bi-category C -spn of C -spans
consists of

. C -objects as objects;

. 2-sources R = (A r0 R r1 B) of C -morphisms as 1-cells from A to B ; these are
called spans, while the mono-sources among the spans are also known as relations;

. C -morphisms R t S that make the obvious triangles commute as 2-cells from R to
S = (A s0 S s1 B).

The 1-cell composition of R with S = (B s0 T s1 C) is formed by selecting a specific
pullback of the cospan R r1 B s0 S, while the identity spans have two C -identities as
components. (Notice that the span composition of relations in general fails to be a relation.)

Dual notion: the bicategory C -csp with co-spans R = (A r0 R r1 B) as 1-cells.

R:spn 4.7.01 Remarks.

(a) In set a span from A to B is the obvious generalization of a graph, where all arrows start at
some element of A and end at some element of B . It may also be seen as an A×B -matrix
of (hom-)sets. Span-composition with a span from B to C considers all possible paths of
length 2 from elements in A to elements of C ; it corresponds to a matrix-product where
multipliction and addition are replaced by cartesianproduct and disjoint union, respecively.

Relations from A to B are spans with at most one arrow linking any a ∈ A with each
b ∈ B . Hence the span-composition of relations can fail to be a relation; in general parallel
arrows can arise by span composition which need to be identified to arrive at a relation. This
amounts to forming the epi–mono-source factorization of the composite span.

(b) Since the composition in spn is defined by means of pullbacks, which do not need to have
canonical representatives and hence involve choices, it is not clear, if these choices can be
made in such a way as to make the composition of spans strictly associative. Instead one can
accept the mediating isos, in particular since they are well-behaved or “coherent”.

(c) spn is closed in the sense of Definition
D:closed
4.5.02.
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(d) Monads in spn are small categories: an endo-span on a set C assigns hom-sets of a graph
with node-set C , while η and µ provide the identities and the composition.

To be able to extract relations from spans, at least in categories with finite products, we need the
following notion:

D:imfact 4.7.02 Definition. The image of a C -morphism A f B, if it exists, is the smallest subobject
of B through which f factors. It will be denoted by f -img .

P:extr 4.7.03 Proposition. If A f B has an image-factoization A e f -img m B, then A e

f -img is an extremal epi.

In the presence of finite products spans R = (A r0 R r1 B) can be identified with
morphisms into R 〈r0, r1〉 A×B, and taking the image of the latter results in sub-objects of
A×B , which bijectively correspond to mono-spans from A to B . Since we already required
C to have pullbacks to enable the composition of spans, the step to require finite products is a
rather small one as it amounts to requiring an initial object in addition to pullbacks.

While a kernel pair, viewed as a relation, due to its universal property as a pullback is
trivially reflexiv and symmetric, its transitivity initially takes the somewhat strange form that
the composite span(!) factors throuth the kernel pair. If image factorizations exist, the mediating
morphism can be factored, which produces the composite relation and shows that it is contained
in the original relation.

congru 4.7.04 Definition. A mono-span R = (A ro R r1 A) on a C -object A is called a
congruence or internal equivalence relation, if the composit span exists and the identity span, the
opposite span and the composit span all factor through R by means of morphisms A r R,
R s R and T t R. (Note that t need not be mono.)

A congruence is called effective, if it is the kernel pair of some morphism.

The following definition will ensure that image factorizations exist by requiring that congru-
ences built via kernel pairs do have quotients, analogous to sets of equivalence classes equipped
with the relevant structure.

D:regu 4.7.05 Definition. A finitey complete category C is called regular , if

. coequalizers of kernel pairs exist in C ;

. regular epis are stable under pullback;

and exact or Barr-exact , if in addition

. every concruence is a kernel pair.
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T:regimfac 4.7.06 Theorem. Any morphism of a regular category can be factored as a regular epi followed
by a mono, and this factorization is essentially unique.

Proof. Consider the kernel pair 〈p0, p1〉 of A f B and form its coequalizer A e E. Since
p0 ; f = p1 ; f there exists a unique morphism E m B satisfying f = e ; m . It remains to
show that m is mono. For this purpose we sub-divide the pullback diagram for the kernel pair
into four smaller pullbacks:

A E B

R0 Q E

P R1 A

e m

e

m

q1

q0

w1 u1

v1

v0

u0

w0 t

p1

p0

f

f

Because of regularity, vi and wi , i < 2 , are regular epis, which in paricular implies that t as
the composition of two epis is epi. Now

t ; q0 = p0 ; e = p1 ; e = t ; q1

shows that q0 = q1 , hence by Proposition
P:monker
4.6.08 m is mono.

C:regextr 4.7.07 Corollary. In regular categories every extremal epi is regular.

In exact categories every internal equivalence relation is guaranteed to have a quotient; this
may fail in merely regular categories. Fortunately, very many of the relevant categories in practice
are exact:

4.7.08 Theorem. (cf. nlab)T:exact

. Any category monadic over some power setn is exact.

. Any abelian category (= category enriched in ab , the category of abelian groups with the
tensor product) is exact.

. Any topos (= replacement for set particularly suitable for “geometric” and constructive
logic) is exact.

. Any category of models of a Lavwere theory (a particularly nice type of algebraic theory) in
an exact category is again exact.
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4.8 Comma Categories
SS:comma

A very useful constructon on cospans of functors C F A G D is the so-called comma-category
F ↓ G .

D:comma 4.8.00 Definition. The comma category F ↓ G has

. as objects triples 〈C, f,D〉 with C ∈ C , D ∈ D and f ∈ 〈CF,DG〉A ;

. as morphisms from 〈C, f,D〉 to 〈C ′, f ′, D′〉 pairs of morphisms 〈u, v〉 ∈ 〈C,C ′〉C ×〈D,D′〉D
subject to the condition

CF

DG

C′F

D′G

f f ′

u

v

E:comma 4.8.01 Example.

. Given a category C and an object C , the comma category C ↓ C has as objects all arrows
with domain C , and as morphisms commutative triangles with domain C .

Dually, C ↓ C has as objects all arrows with codomain C and as morphisms commutative
triangles with codomain C .

. Given C -objects C and C ′ , the comma category C ↓ C ′ coincides with the set 〈C,C ′〉C .

Associated with a comma category F ↓ G are domain and codomain functors A ∂0 F ↓ G ∂1

F ↓ G ∂1 B, as well as an obvious natural transformation ∂0F
F . G ∂1G satisfying the

following universal property (HW):

Then for any span of functors A U0 X U1 B and any natural transformation U0F
ϕ

U1G, there exists a unique functor X V F ↓ G such that ϕ factors as idV (F . G) .

P:pset 4.8.02 Proposition. The category 1 ↓ set of pointed sets, whose objects are sets with dis-
tinguished base point and whose morphisms are base-point preserving functions, is closed with
respect to the smash product ∧ that first takes the cartesian product and then identifies all pairs
with a base point in at least one component.

Proof. For a set X we write X∗ for the one-pont extension X + {∗} , where ∗ is the base
point. As the smash product is symmetric, there is no need to distinguish between a left and a
right “function space”. Define

bX∗, Y∗c
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to be the set of partial functions X Y . Then we obtain an “evaluation”

X∗ ∧ bX∗, Y∗c∗ ev Y∗

specified by
〈x, f〉 7→ xf , 〈∗, f〉 7→ ∗ , 〈x, ∗〉 7→ ∗ and 〈∗, ∗〉 7→ ∗

whenever x ∈ X and f ∈ bX∗, Y∗c . Except for the case distinctions, the proof of closedness
proceeds along similar lines as the proof that 〈set ,×, 1〉 is cartesian closed.

R:pset 4.8.03 Remark. One-sided variants like “left zeros” and “right zeros”, respevively, intended to
absorb only when pre- or postcomposed, are incompatilbe with the associativity of composition.
For the same reason one-sided variants of the smash product fail to be associative.

4.9 Profunctors
SS:Prof

The standard morphisms between categories are functors, see Definition
D:GrMr
4.0.01, a notion certainly

biased by the preference of functions over relations in general mathematics. After all, naive
category is based on set which has functions as morphisms, rather than rel (see Example
E:relclosed
4.5.04).

It seems reasonable to generalize functors between categories to more general morphisms
in much the same way as relations generlize functions. The corresponding “profunctors” have
already been mentioned in Example

E:closed
4.5.05(5).

A functor C F D maps every C -arrow A f B to a D -arrows AF fF BF in such
a way that identity arrows and composition are preserved.

We may indicate the functional assignment A 7→ AF by introducing new arrows from the
C -object A to the D -object AF . This effectively “glues” the categories C and D together
into a graph with the disjoint union of the objects of C and D as nodes, and with the disjoint
union of the arrows of C and D and the new arrows A AF , A a C -object, as arrows. This
graph is not yet a category, as no composition between the C -, respectively D -arrows and the
new arrows has been defined. Indeed, every new arrow A AF has to be composed with all
C -arrows with codomain A , and with all D -arrows with domain AF in suitably associative
fashion. Furthermore, one then would expect to obtain commutative squares of the form

A

B

AF

BF

f fF

Abstracting from the functor C F D one arrives at
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4.9.00 Definition. By a profuncor C R D we mean an ordinary functor C op ×D R set .

Interpretation: Consider the elements of 〈C,D〉R as new arrows from the C -object C to
the D -object D . Funtoriality now yields a composition of C -arrows with the new arrows, and
of the new arrows with D -arrows, both resulting in new arrows and satisfying suitable associative
laws to the effect that the order of composition for

C ′′ f C ′ g C h D h D′ k D′′

does not matter. In effect, the profunctor R amounts to a supercategory of the disjoint union
C + D with potentially extra arrows joining C -objects with D -objects, a so-called “glueing” of
C with D .

R:prof 4.9.01 Remark. The composition of profunctors is somewhat problematic: given A R

B S C , the set 〈A,C〉(R ; S) ought to be the disjoint union of the sets 〈A,B〉R× 〈B,C〉S
modulo equalities resulting from B -morphisms. This type of colimit is also known as a co-end .

However, if B has a proper class of objects, this construction may result in a proper class,
e.g., if B is discrete. This problem diappears, if we restrict ourselves to small categories.

4.9.02 Examples.

. If C and D are ordered sets, i.e., categories enriched over 2 , then a profunctor C ×D R 2

amounts to combining C and D into a new ordered set with the disjoint union of objects,
where certain C -objects may be smaller than certain D -objects, but not vice versa. Such
2-enriched profunctors are also known as order ideals. This name is slightly misleading
as “ideals” as defined below are special endo-profunctors, or even sub-1-cells of endo-1-cells
carrying a monad structure.

. If C and D are sets C and D , respectively, we have C op = C , hence a profunctor is just
a function C ×D R 2, which is essentially a subset of C ×D , i.e., an ordinary relation.

. If C and D are monoids M and N , a profunctor M R N amounts to a single set R of
new morphisms from the single object of M to the single object of N together with suitable
composition functions M ×R ρL R ρR R×N .

. For every locally small category C , the hom-functor C op × C hom set is a profunctor.

. For every ordinary functor C F D we obtain two profunctors C F̂ D specified by
C op ×D F op × D Dop ×D hom set and D F̌ C specified by Dop × C Dop × F

Dop ×D hom set . With the correct (obvious?) notion of 2-cell between profunctors, these
turn out to be adjoint, i.e., F̂ ` F̌ .
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If the new sets of arrows 〈C,D〉R are independent from C and D , the compositions ρL and
ρR with the original arrows have to be defined explicitly. However, in certain cases we can encode
the new sets of arrows by actual arrows of some category A and re-use its composition for ρL
and/or ρR .

E:2sideal 4.9.03 Example. Consider a cospan of functors C F A G D between locally small
categories. Any sub-functor R of C op ×D F op ×G A op ×A homA set yields a profunctor
C R D . Here by “sub-functor” we mean that 〈C,D〉R ⊆ 〈CF,DG〉A .

4.10 Ideals
SS:ideal

A special case of Example
E:2sideal
4.9.03 above deserves a special name:

D:ideal0 4.10.00 Definition. Profunctors that arise as subfunctors of hom-functors0 are called 2-sided
ideals or just ideals of C .

E:lrideal 4.10.01 Example. If a profunctor C R 1, i.e., C op × 1 R set satisfies 〈C, 1〉R ⊆ C/C ,
we call R a left ideal .

Similarly, if a profunctor 1 R D , i.e., 1op ×D R set satisfies 〈1, D〉R ⊆ D/D , we call
R a right ideal .

R:profcomp 4.10.02 Remark. Profunctors C R 1 S D always compose to a profunctor C R ; S D .

If C = D , R is a left ideal and S is a right ideal, the cartesian product of 〈C, 1〉R×〈1, C ′〉S
always contains a subset of 〈C,C ′〉C . Conjecture: these subsets constitute a 2-sided ideal on
C .

There is, however, a second approach to ideals that is more widely applicable and better
indicates what ideals are good for. Remark

R:enrMon
4.2.03 indicated that the monads in a 2-category

again form a nice 2-category. Monads T on an endomorphism C T C in this setting take the
form

C

C

TTTC
η

µ

subject to the ususal identity and associativity laws.

D:MonIdl 4.10.03 Definition. An monomorphism I ι T is called a left ideal , if the composite 2-cell
TI Tι TT µ T factors through ι by means of a 2-cell TI λ I.

0 There has to be a natural transformation into the hom-functor that pointwise is an inclusion.
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Dual notion: right ideal , where IT ιT TT µ T factors through ι by menas of a 2-cell
IT ρ I.

A 2-sided ideal , or just ideal, is both a left- and a right-ideal.

E:MonIdl 4.10.04 Examples.

. Ordinary monoids are monads in the suspension of set , with a single object, sets as 1-cells
that compose with cartesian product, and ordinary functions as 2-cells.

An left ideal for a monoid 〈M.·, e〉 hence is a subset A ⊆ M such that the restriction of
M ×M · M to M ×A factors through A , i.e., M ·A ⊆ A , or even M ·A = A , since
M contains a neutral element.

. Recall that rings are monoids in the suspension of the category ab of abelian groups, with
a single object, abelian groups as 1-cells that compose with tensor product, and group
homomorphisms as 2-cells. A left ideal for a ring 〈R, ·, 1〉 is a subgroup A of R , such that
the restriction of R⊗R · R factors through A , i.e., R ·A ⊆ R .

. Categories themselves are monoids in the 2-category spn of spans over sets, cf. Remark
R:spn
4.7.01(d). Hence left ideals in some category C are sets A of C -morphisms such that every
pre-composition with some arrow in A again belongs to A .

In order to speak about "principal ideals" (of either type) it is neccessary that the 1-cells are
somehow set-based, so one can distinguish "elements" and therefore has ideals "generated" by
such elements. In the suspension of set or ab , the 1-cells are sets (with an abelian group
structure in the second case), so the notion of principal ideal is clear. Spans, on the other hand,
assign hom-sets to pairs of elements in the domain, resp. codomain of the span. Hence one can
pick an element of one of the hom-sets and generate an ideal from there. For a (small) category
C , the arrows factoring through some fixed X a Y form a principal 2-sided ideal, while those
with a as last, resp. first factor form a left, resp. right, principal ideal.

One can also interpret 2-sided ideals as generalizaions of zero morphisms in the sense outlined
below.

If C is enriched in 1 ↓ set , then every hom-set [A,B] has a distinguished element 0A,B , a
so-called zero morphism, such that all compositions with zero morphisms are again zero morphisms.
In a sense, the zero morphisms act like a “typed absorber”.

Recall from Remark
R:monord
4.0.03 that collapsing all hom-sets of a category C to a singleton yields

a potentially large pre-ordered set and a full functor from C into the latter. This process can be
refined using ideals, which themselves may be thought of as absorbing subsets of all C -morphisms.

L:smash 4.10.05 Lemma. If C is a category with an ideal A , then collapsing all parallel A-morphisms
into a single one results in a new category C (A) and a full functor from C into the latter.
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R:MonIdl 4.10.06 Remarks.

. Since C may have several connected components, catgories of the form C (A) need not be
enriched in 1 ↓ set .

. Even in a connected component there can be morphisms that do not factor through any
A-morphism, and there can be hom-sets that do not intersectthe ideal A .

. For every functor C F D the pre-image of all zero morphisms in D ought to be an ideal
in C , and in fact every ideal in C can be obtained in this fashion, even from a full functor
that is surjective on objects.

4.11 Sets, bags and tuples
SS:SBT

Fundamentally, here are three ways how to form collections of elements of a set:

. as sets, where neither the order nor the (positive) multiplicity matters;

. as bags or multisets, where the order does not matter, but the multiplicity does;

. as tuples, where the order matters (which leaves no room to ignore the multiplicity).

In all three cases, one can form “power-collections”, either of finite, or unconstrained collections
of elements of a given set. In CS, mostly the finite collections will be of interest. Moreover, one
can distinguish, if the empty collection is allowed or not. This should give rise to 12 monads.

Power-sets: We have already seen the (unconstrained) power-set monad P = 〈P, {−},
⋃
〉 and

its restriction F to finite sub-sets. The EM-algebras are
⊔
-semi-lattices, which are in fact

complete, but where only superma need to be preserved by the morphisms in the infinite
case, and t-semilattices in the finite case. The latter may be thought of as idempotent
commutative monoids. Requiring the sub-sets in question to be non-empty does not cause
any problems in the unit or multiplication. In terms of the EM-algebras, the requirement for
a least element ⊥ has to be dropped.

Power-bags: The singleton- and union-operations carry over from sets to multisets. But rather
than a supremum-operation, where multiple occurrences of eleemts do not matter, we now
obtain a commutative “addition” that need not be idempotent. Hence in the finite case we
obtain as EM-algebras commutative monoids, or commutative semi-groups, if non-empty sets
are required. In the infinite case infinite sums are available as well.

Power-tuples: In the finite case we recover the free monoid monad (−)∗ , resp., the free
semigroup monad (−)+ , of non-empty tuples are considered. The infinite case is considerably
more complicated, one has to consider functions from ordinal numbers into the alphabet
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X in question, and the multiplication of a potential monad would seem to require ordinal
addition of ordinal numbers. [Presently I have no idea what the EM-algebras might be.]

As seen in the first sections, the free monoid monad is connected with the finite and the infinite
power-set monad by rather simple distributive laws. These are easily seen to be unaffected by
the presence or absence of the empty word/subset.

These distributive laws carry over to the finite and infinite power-bag monads, where they
take the form of distributivity of multiplication over addition.

4.11.00 Conjecture. In order to obtain the category of commutative semi-rings as a category
of EM-algebras for a monad, one would expect to find a non-trivial distributive law on the finite
bag monad.

4.12 Pre-ordered and partially ordered sets
SS:Pos

As categories generalize pre-ordered sets, various concepts of order theory can be generalized to
the categorical setting. As a reference, we recall some of them here.

D:order 4.12.00 Definition.

(0) A pre-ordered set 〈P,v〉 consists of a set P and a reflexive transitive relation v . If the
latter is anti-symmetric as well, one has a partially ordered set , or poset , for short. If in
addition v ∪ v op = P × P , we speak of a linarly ordered set .

(1) A element x ∈ P is called an upper bound of a subset A ⊆ P , written x v A , provided
x v a for ervery a ∈ A . The set of all upper bounds af A is denoted by A↑ . A least upper
bound , or supremum A

⊔
is an element of A↑ satisfying A

⊔
v A↑ .

Dual notions: lower bound ; A↓ ; greatest lower bound or infimum A
d

.

(2) Functions P f Q between pre-ordered sets or between posets 〈P,v〉 and 〈Q,≤〉 are
called order-preserving , or monotone, if x v y implies xf ≤ zf for all x, y ∈ P .

(3) Relations P R Q between pre-ordered sets are called order-ideals, if they satisfy v
R le ⊆ R , which bey the reflexivity of the orders is equivalent to the equality). Notice that
order-preserving functions usually are not order-ideals, unless both orders are discrete.

4.12.01 Remark. Notice that the supremum, respectivley, infimum of ∅ ⊆ P , if it exists, has
to be a smallest, resp., largest element element of P , usually denotec by ⊥ , resp. > .

D:semilattice 4.12.02 Definition.
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(0) A poset 〈P,v〉 where any two elements x, y ∈ P have a supremum, usually denoted by
x t y , is called a u-semilattice. The slightly stronger notion of u-semilattice results from
requiring all finite subsets to have a supremum, in particular the empty set.

Dual notion: t-semilattice.

(1) A poset that is both a t-and a u-semilattice is called a lattice.

(2) A lattice 〈L,v〉 is called complete, if every subset A ⊆ L has a supremum A
d

, or
equivalently, every subset B has an infimum B

d
(namely the supremum of its set A = B↓

of lower bounds). A lattice is called distributive, provided t and u , viewed as binary
operations, distribute over each other, while a complete lattice is completely distributive
lattice, if arbitrary suprema distribute over arbitray infima, and vice versa.

E:order 4.12.03 Examples.

. For every set X the power-set XP ist partially ordered by set-inclusion ⊆ , in fact a com-
pletely distributive lattice with suprema given by union

⋃
, and infima given by intersection⋂

.

. The natural numbers IN = {0, 1, 2, . . . } are linearly ordered under ≤ ; finite nonempty
suprema and infima are given by max and min , respectively. The empty supremum exists
and is 0 , but there is no empty infimum, i.e., largest element.

. The division order | on the natural numbers is a distributive lattice with > = 0 and
⊥ = 1 . Finite infinum and supremum are given by gcd and lcd , respectively, while infinite
suprema/infima do not exist.

4.12.04 Remark. The notions of t-semilattice and of (complete) lattice seem to presuppose
a partial or at least pre-ordering v . This, however, is only an illusion. An operation @ that
is defined at least on non-empty finite sets may be thought of alternatively as an associative
idempotent binary operation, possibly with a unit ⊥ = ∅@ . Then the ordering may be derived
via x v y iff {x, y}@ = y . In that case @ becomes the supremum-operation for v . But one
may equally well define the opposite order x w y by the same forumla {x, y}@ = y . Of course,
then @ has to be interpreted as the infimum operation for w . Using a symbol like t oer

⊔
instead of @ for the operation on finite subsets expresses a preference for one of the two possible
orders. While the second order is not ruled out by this choice, the reversed notation for suprema
resp. infima quickly becomes confusing and error-prone.
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M -automaton

deterministic, 20
finite deterministic, 20
finite non-deterministic, 17
non-deterministic, 17⊔

-semi-lattice, 3
u-semilattice, 69
t-semilattice, 69
s

-image, 52
1-cell, 31
2-category, 34
2-cell, 31
2-functor, 34
2-sided ideal, 21, 65, 66

absolute right extension, 49
absolute left extension, 49
absolute left lifting, 49
absolute right lifting, 49
adjoint, 46
algebra homomorphism, 44
algebra for T , 44
alphabet

typed, 18, 21
aperiodic, 29
arrow, 31
automaton

feedback, 19

Barr-exact category, 60
bound

greatest lower, 68
lower, 68
upper, 68

cartesian closed, 52
category, 31

Barr-exact, 60
co-complete, 54
complet, 54
concrete, 36

exact, 60
regular, 60

closed, 50
co-algebra, 44
co-complete category, 54
co-cone, 54
co-end, 64
co-equalizer, 55
co-kernel pair, 56
co-limit, 54
co-monad, 43
co-multiplication, 43
co-product, 55
co-span, 59
co-unit, 43

of an adjunction, 46
coalgebra homomorphism, 44
codomain, 31
comma category, 62
commutative diagram, 33
complete

category, 55
complete lattice, 32, 69
complete category, 54
completely distributive lattice, 69
composition

sequential, 19
concrete category, 36
cone, 54
congruence, 58, 60

syntactic, 15

deterministic M -automaton, 20
finite, 20

diagram
commutative, 33

direct image, 52
distributive lattice, 69
domain, 31

edge, 31
effective
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congruence, 60
Eilenberg-Moore algebra, 44
Eilenberg-Moore coalgebra, 44
EM-algebra, 44
EM-coalgebra, 44
embedding, 36
enriched, 35
epi

extremal, 40
regular, 56
strong, 40

epi-sink, 42
epimorphism, 39
equalizer, 55
equivalence relation

internal, 60
stable, 14

evaluation, 52, 63
exact category, 60
extremal mono, 40
extremal epi, 40

faithful functor, 36
feedback automaton, 19
final state, 17, 20
finite deterministic M -automaton, 20
finite non-deterministic M -automaton, 17
finitely complete

category, 55
full functor, 36
full sub-category, 42
full subcategory, 34
fully recognized by a morphism, 7
functor, 32, 35

faithful, 36
full, 36

functor category, 37
funny tensor, 53

graph, 31
graph morphism, 32
greatest lower bound, 32, 68
Green’s relations, 21
Greens’s relations, 23

group
local, 11

homomorphism
lax, 7
oplax, 7

ideal
2-sided, 21, 65, 66
left, 21, 65
principal, 22
right, 21, 66

image
direct, 52
of a morphism, 60

infimum, 32, 68
initial state, 17, 20
internal equivalence relation, 60
iso, 39
isomorphism, 39

natural, 47

Kan extension, 48
kernel pair, 55

labeled transition system, 17
lattice, 69

complete, 32, 69
completely distributive, 69
distributive, 69

lax homomorphism, 7
least upper bound, 32, 68
left adjoint, 46
left extension, 49

absolute, 49
left ideal, 21, 65
left lifting, 49

absolut, 49
left quotient, 9
limit, 54
linarly ordered set, 68
local group, 11
local neutral element, 11
locally small, 31
lower bound, 68
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greatest, 32

monad, 42
mono, 39

extremal, 40
regular, 56
strong, 40

mono-source, 42
monoid

syntactic, 15
monomorphism, 39
monotone, 68
morphism, 31

natural isomorphism, 47
neutral element

local, 11
non-deterministic M -automaton, 17

finite, 17
non-full subcategory, 42
non-full subcategory, 44
normal sub-group, 11

object, 31
oplax homomorphism, 7
order ideal, 64
order-ideal, 68
order-preserving function, 68

partial quotient, 16
partially ordered set, 68
pointed set, 62
polarity, 9, 50
poset, 68
posettal collapse, 33
post-cancellable, 39
post-closed, 50
post-residuation, 9
pre-cancellable, 39
pre-closed, 50
pre-ordered set, 68
pre-residuation, 8
prefix-property, 17
principal ideal, 22
product, 55

profunctor, 64
pullback, 55
push-out, 56

quotient, 59
partial, 16
syntactic, 15

recognizable, 7
recognized by a morphism

subset, 7
regular epi, 56
regular category, 60
regular class, 30
regular mono, 56
relation, 59

single-valued, 47
total, 47

retraction, 39
right ideal, 21, 66
right adjoint, 46
right extension, 48

absolute, 49
right ideal, 65
right inverse, 39
right lifting, 49

absolute, 49
right quotient, 9

saturation, 18
section, 39
semilattice

u -, 69
t -, 69

sequential composition, 19
set

linearly ordered, 68
partially ordered, 68
pointed, 62
pre-ordered, 68

shuffle-product, 53
single-valued relation, 47
sink, 42
small, 31
smash product, 62
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source, 31, 42
span, 59
split epi, 39
split mono, 39
stability, 14
stable equivalence relation, 14
state, 17, 20

final, 17, 20
initial, 17

strong epi, 40
strong mono, 40
structure morphism, 44
sub-category

full, 42
sub-group

normal, 11
sub-objects, 41
subcategory

full, 34
non-full, 44

subctegory
non-full, 42

super-object, 41
supremum, 32, 68
suspension, 52
syntactic concruence, 15
syntactic monoid, 15
syntactic quotient, 15

target, 31
tensor

funny, 53
tensor product, 52
total relation, 47
transition system

labeled, 17
transition functions, 20
transition relations, 17
transportablity, 58
trivial, 30
typed alphabet, 18
typed alphabet, 21

unit

of an adjunction, 46
upper bound, 68
upper bound

least, 32, 68

vertex, 31

whiskering, 37
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