Applied Automata Theory (SS 2011) Out: Wed, Apr 27 Due: Tue, May 3

Exercise Sheet 2

Jun.-Prof. Roland Meyer, Georg Zetzsche Technische Universität Kaiserslautern

Exercise 2.1

Since in the lecture, WMSO_{0} has not been defined, we include a short explanation. In WMSO_{0} for words, the signature contains the predicates \subseteq, Sing, Suc, and $\subseteq P_{a}$, which are interpreted such that

- $X \subseteq Y$ denotes the usual inclusion,
- $\operatorname{Sing}(X)$ means $|X|=1$, i.e., X is a singleton,
- $\operatorname{Suc}(X, Y)$ means that X and Y are singletons and the element in Y is the successor of the element in Y,
- $X \subseteq P_{a}$ means that all positions in X contain an a.

Furthermore, a WMSO_{0}-formula contains no first order variables.
(a) Show that any WMSO[$<$, suc]-definable language is already WMSO[suc]-definable. (This amounts to expressin < with the help of suc.)
(b) Show that any WMSO[suc]-definable language is already WMSO_{0}-definable.

Exercise 2.2

In the last exercise, we saw that, with respect to languages, WMSO_{0} is equally expressive as WMSO $[<$, suc $]$. Since it is often desirable to have a logic with as few predicate symbols as possible, we would like to eliminate the Sing-predicate. Assume that $|\Sigma| \geq 2$ and that we only consider word structures.

1. Present a formula φ in WMSO_{0} that does not utilize the Sing-predicate and that expresses emptiness of a set (i.e., φ has a a free second order variable X and is satisfied by an interpretation I if and only if I assigns X to the empty set).
2. Present a WMSO_{0}-formula φ that does not use the Sing-predicate and expresses the property of being a singleton. (Hint: Singleton sets have exactly two subsets.)

Exercise 2.3

(a) Present a WMSO[$<$, suc]-formula that defines the language

$$
\left\{w \in\{a, b\}^{*}| | w \mid \text { is divisible by } 3\right\} .
$$

(b) Present a WMSO[$<$, suc $]$-formula that defines the language $\{a a a, b b b\}^{*}$.
(c) Show that, for each alphabet Σ, the language defined by the following formula is regular:

$$
\begin{aligned}
\exists X: & (\forall x: \forall y: \forall z:(X(x) \wedge X(y) \wedge x<z \wedge z<y) \rightarrow X(z)) \\
& \wedge(\exists x: \exists y:(x<y \wedge X(x) \wedge X(y))) \\
& \wedge\left(\forall x: X(x) \rightarrow P_{a}(x)\right)
\end{aligned}
$$

Exercise 2.4

Use Büchi's construction from the lecture to determine a $\mathrm{WMSO}[<$, suc $]$-formula that defines the language accepted by the following automaton:

