Applied Automata Theory (SS 2011)

Out: Thur, May 5 Due: Wed, May 11

Exercise Sheet 3

Jun.-Prof. Roland Meyer, Georg Zetzsche Technische Universität Kaiserslautern

Exercise 3.1

Using the method presented in the lecture, construct a finite automaton that accepts the language defined by the formula $\varphi = \forall x : (P_a(x) \to \forall y : (x < y \to P_b(y))).$

Exercise 3.2

Suppose the logic WMSO[<, suc, \sqsubseteq] is obtained from WMSO[<, suc] by adding the predicate \sqsubseteq , which is interpreted as

 $S_w, I \models X \sqsubseteq Y \implies$ for each $x \in I(X)$, there is a $y \in I(Y)$ such that $x \leq y$.

Describe how the proof of Theorem Büchi II has to be changed to apply to the logic $WMSO[<, suc, \sqsubseteq]$.

Exercise 3.3

Given an automaton A and a WMSO[<, suc]-formula φ , the *model checking* problem asks whether every word accepted by A is satisfied by φ . If the latter condition holds, we write $A \models \varphi$. Show that the model checking problem can be reduced (in the sense of Turing reduction) to the problem of whether in a given finite automaton, one given state can be reached.

Exercise 3.4

Similar to \exists WMSO, we define *universal* WMSO, denoted by \forall WMSO, as the syntactic restriction of WMSO to formulas

$$\forall X_1:\ldots\forall X_n:\varphi$$

where φ does not contain second-order quantification. Show that a language is regular iff it is \forall WMSO-definable.