Applied Automata Theory (SS 2011)

Out: Wed, May 25 Due: Wed, June 1

Exercise Sheet 6

Jun.-Prof. Roland Meyer, Georg Zetzsche Technische Universität Kaiserslautern

Exercise 6.1

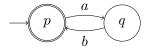
Let A be a Büchi automaton and $U, V \subseteq \Sigma^*$ be equivalence classes with respect to \sim_A .

(a) Let $w \in L(A)$ and $w \in UV^{\omega}$. Then $UV^{\omega} \subseteq L(A)$.

(b) Suppose $w \in \overline{\mathsf{L}(A)}$ and $w \in UV^{\omega}$. Then $UV^{\omega} \subseteq \overline{\mathsf{L}(A)}$.

Exercise 6.2

Consider the following NBA A:



Determine the languages $L_{q,q}$ and $L_{q,q}^{fin}$ and calculate the index (i.e., the number of equivalence classes) of \sim_A .

Exercise 6.3 (Disjunctive Well-Foundedness)

A partially ordered set (A, \leq) is said to be *well-founded* if for every sequence

$$a_1 \ge a_2 \ge a_3 \ge \cdots,$$

 $a_i \in A, i \in \mathbb{N}$, there is an $n \in \mathbb{N}$ such that $a_m = a_n$ for any $m \ge n$. Let $T_1, \ldots, T_n \subseteq A \times A$ be well-founded partial orders and $R \subseteq A \times A$ be a partial order such that $R \subseteq T_1 \cup \cdots \cup T_n$. Show that R is well-founded too. *Hint:* Use Ramsey's Theorem.

Exercise 6.4

Consider the program

$$(x := 5; while x > 0 do x := x - 1 end) || (y := 7; z := 3),$$

in which || stands for concurrent execution.

- (a) Describe how this program can be translated into a finite automaton that simulates its behaviour.
- (b) Draw 5 states of the automaton together with the edges connecting them.