Applied Automata Theory (SS 2011)	Out: Wed, June 22 Due: Wed, June 29
Exercise Sheet 9	
JunProf. Roland Meyer, Georg Zetzsche	Technische Universität Kaiserslautern
$\gamma/arepsilon$ $\delta/arepsilon$	$\gamma/\delta\gamma,\delta/\delta\delta$ $\delta/arepsilon$ $\gamma/arepsilon$

Figure 1: Pushdown system P

Figure 2: Pushdown system P'

Exercise 9.1

Use the algorithm from the lecture to determine the set $\operatorname{pre}^*(C)$ in the pushdown system P in Figure 1, where $C = \{(q, w) \in \{\gamma, \delta\}^* \mid |w| \text{ is even}\}.$

Exercise 9.2

Using the algorithm from the lecture, determine the set $\operatorname{pre}^*(\{(r,\varepsilon)\})$ in the pushdown system P' in Figure 2.

Exercise 9.3

In an example in the lecture, the *lazy* variant of the algorithm to compute $\operatorname{pre}^*(C)$ was mentioned. Here, in the automaton A_{i+1} , the relation $\rightarrow_{i+1} = \rightarrow_i \cup \rightarrow'$ is defined by

 $s_{q_1} \xrightarrow{\gamma} s$ iff $s_{q_2} \xrightarrow{w} s$ and $q_1 \xrightarrow{\gamma/w} q_2$ and $s \to_i^* s'$ for some $s' \in S_F$, where $A_i = (S, S_I, \to_i, S_F)$ and $A_{i+1} = (S, S_I, \to_{i+1}, S_F)$. Does this variant work in

where $A_i = (S, S_I, \rightarrow_i, S_F)$ and $A_{i+1} = (S, S_I, \rightarrow_{i+1}, S_F)$. Does this variant work is general? If so, explain why. Otherwise, present a counter-example.

Exercise 9.4

Using a method of your choice, determine the set of configurations from which an infinite accepting run is possible in the following Büchi-pushdown system:

