	Advanced Automata Theory	
Emanuele D'Osualdo	Exercise Sheet 1	TU Kaiserslautern
Sebastian Muskalla		Summer term 2016

Out: 21 April

Due: 25 April, 12:00

Submit your solutions until Monday, 12:00, in the box in the staircase of building 34, 4th floor.

Exercise 1: $\text{REG} \Rightarrow \text{NFA}$

Use the methods discussed in the lecture to prove that $ab^+ \subseteq \mathcal{L}(A)$, where the NFA A is specified as follows:

Hint: Transform the regular expression into an NFA.

Exercise 2: NFA \Rightarrow REG

Use Arden's Lemma to find a regular expression for $\mathcal{L}(A)$, where A is specified as follows:

Exercise 3: Arden's Lemma

Consider the following extension of Arden's Lemma:

If U, V $\subseteq \Sigma^*$ and $\epsilon \in U$ then all solutions L $\subseteq \Sigma^*$ of the equation L = UL \cup V are precisely the elements of $\mathcal{L} = \{U^*V' \mid V \subseteq V' \subseteq \Sigma^*\}.$

Prove the extension by solving a) and b) below:

- a) Show that if L is a solution of L = UL \cup V then L $\in \mathcal{L}$.
- b) Show that every $L \in \mathcal{L}$ satisfies $L = UL \cup V.$

Exercise 4: Languages & Formulas

Provide some arguments with your solution for the following tasks:

- a) Find a formula φ such that $L(\varphi) = \Sigma^* a \Sigma^* b^+$.
- b) What is the language described by $\exists y \forall x \forall z : (x < y \land y < z) \rightarrow \neg P_a(x) \land P_b(y)$?