Advanced Automata Theory Exercise Sheet 3

Emanuele D'Osualdo Sebastian Muskalla

TU Kaiserslautern Summer term 2016

Out: May 4

Due: May 9, 12:00

Exercise 1: Ehrenfeucht-Fraïssé Games

Let $n \in \mathbb{N}$ be arbitrary. Which is the maximal number of rounds $k \in \mathbb{N}$ such that the duplicator has a winning strategy for $G_k((ab)^{2n+1}, (ba)^{2n+1})$?

Hint: First see what happens for n = 1 and n = 2.

Exercise 2: More Ehrenfeucht-Fräisse Games

Let $n \in \mathbb{N}$ be arbitrary. For which k does the Duplicator win G_k $(a^n ba^n, a^n ba^{n+1})$?

Exercise 3: Star-Free Languages

Prove or disprove whether the following languages over $\Sigma = \{a, b\}$ are star-free:

- a) (ab \cup ba)*
- b) $(a \cup bab)^*$
- c) $\mathcal{L}_{odd} = \{ w \in \Sigma^* \mid w \text{ has odd length} \}$

Exercise 4: Star-Free \Rightarrow FO[<]-definable

a) Let $w = a_0 \dots a_n \in \Sigma^*$ be a word and let $i, j \in \mathbb{N}$ such that $0 \le i \le j \le n$. Show that for every closed FO[<]-formula φ and FO-variables x, y with $\mathcal{I}(x) = i$, $\mathcal{I}(y) = j$, there is a formula $\psi(x, y)$ such that

 $\mathcal{S}(\mathsf{w}), \mathcal{I} \vDash \psi$ if and only if $\mathcal{S}(\mathsf{a}_{\mathsf{i}} \dots \mathsf{a}_{\mathsf{i}}) \vDash \varphi$.

- b) Deduce from a) that FO[<]-definable languages are closed under concatenation.
- c) Prove using structural induction that every star-free language is FO[<]-definable.