Advanced Automata Theory		
Emanuele D'Osualdo	Exercise Sheet 4	TU Kaiserslautern
Sebastian Muskalla		Summer term 2016

Out: May 11 (Updated version, May 12)

Due: May 17, 10:00

Because of the holiday on Monday, you can bring your submissions to the exercise class (Tuesday 10:00). If you submit (parts of your) solution on Friday, we can return them on Tuesday.

Exercise 1: Presburger formulas & Parikh images

a) Present a Presburger formula ϕ such that every bound variable occurs in **precisely** one atomic expression and such that

$$\mathsf{Sol}(\phi) = \left\{ \left. \begin{pmatrix} 2n+1 \\ n+3 \end{pmatrix} \right| \ n \in \mathbb{N} \right\} \cup \left\{ \left. \begin{pmatrix} 3n+1 \\ 2n+2 \end{pmatrix} \right| n \in \mathbb{N} \right\} \ .$$

b) The **Parikh image** $\Psi : \Sigma^* \to \mathbb{N}^{\Sigma}$ mapps each word w to the vector $\Psi(w)$, where the components store the number of occurrences of each letter in w. For a language $\mathcal{L} \subseteq \Sigma^*$, let $\Psi(\mathcal{L}) = \{\Psi(w) \mid w \in \mathcal{L}\}$. For example for $\Sigma = \{a, b, c\}$:

$$\Psi(ababcb) = \begin{pmatrix} 2\\ 3\\ 1 \end{pmatrix} \text{ and } \Psi((aa)^*(bbb)^*) = \left\{ \begin{array}{c} \begin{pmatrix} 2n\\ 3m\\ 0 \end{pmatrix} \middle| n, m \in \mathbb{N} \right\} \ .$$

Give an NFA A so that $\Psi(\mathcal{L}(A)) = Sol(\varphi)$ for the Presburger formula φ from a).

Exercise 2: "Presburger \Rightarrow NFA"-Algorithm

- a) Prove the correctness of the construction given in class: For every $q \in \mathbb{Z}$ and $w \in (\mathbb{B}^n)^*$, the automaton accepts w starting from q iff w encodes \vec{c} with $\vec{a} \cdot \vec{c} \leq q$.
- b) Construct a finite automaton over $\mathbb B$ for the atomic Presburger formula $x 3y \le 1$.

Exercise 3: "Presburger \Rightarrow NFA" for atomic formulas with equality

One can modify the algorithm for $\vec{a} \cdot \vec{x} \le b$ to produce an NFA for $\vec{a} \cdot \vec{x} = b$ by making the state $0 \in \mathbb{Z}$ the only accepting state and by changing the transition relation so that a transition

$$q \stackrel{ec{eta}}{
ightarrow} rac{1}{2} (q - ec{a} \ ec{eta})$$

is only added if q - $\vec{a} \ \vec{\beta}$ is even.

- a) Use the modified algorithm to construct a finite automaton for x 2y = 1.
- b) Verify your result in a) by checking that

$$\mathcal{L}\big(A_{x\text{-}2y=1}\big) = \mathcal{L}\big(A_{x\text{-}2y\leq 1}\big) \cap \mathcal{L}\big(A_{\text{-}x\text{+}2y\leq \text{-}1}\big) \ .$$

Exercise 4: Semilinear sets

Let $c\in\mathbb{N}^n$ be a vector and let $P=\left\{p_0,\ldots,p_m\right\}\subseteq\mathbb{N}^n$ be a finite set of vectors. We define

$$\mathcal{L}\big(c,P\big) = \left\{ \left. c + \sum_{i=0}^m k_i \cdot p_i \in \mathbb{N}^n \right| k_1,...,k_m \in \mathbb{N} \right\} \,.$$

A set is called **linear** if it is of the form $\mathcal{L}(c, P)$ for some $c \in \mathbb{N}^n$ and finite $P \subset \mathbb{N}^n$. A set is called **semi-linear** if it is a union of finitely many linear sets.

- a) Prove that semi-linear sets are Presburger definable: For any semi-linear set $S \subseteq \mathbb{N}^n$ there exists a Presburger formula φ_S such that $S = Sol(\varphi_S)$.
- b) A function $f: \mathbb{N}^n \to \mathbb{N}^m$ is linear if f(x + y) = f(x) + f(y) and $f(k \cdot x) = k \cdot f(x)$ for all $k \in \mathbb{N}$. Prove that semi-linear sets are closed under linear functions, i.e. if $S \subseteq \mathbb{N}^n$ is semi-linear and $f: \mathbb{N}^n \to \mathbb{N}^m$ is a linear function then $f(S) \subseteq \mathbb{N}^m$ is semi-linear.