	Advanced Automata Theory	
Emanuele D'Osualdo	Exercise Sheet 5	TU Kaiserslautern
Sebastian Muskalla, Sebastian Schweizer	Summer term 2016	

Out: May 18, Updated II, May 19: Added Ex. 2 c), Fixed bug in Ex. 4
Due: May 23, 12:00

Exercise 1: Quantifier Elimination

a) Eliminate the quantifiers of the following formula using the method described in class:

$$
\neg \forall x: 3 x<2 y \vee y<2 x
$$

b) An existential Presburger formula is a formula as described by the following EBNF:

$$
\varphi::=t_{1}<t_{2}\left|t_{1}=t_{2}\right| \exists x: \varphi_{1}\left|\varphi_{1} \vee \varphi_{2}\right| \varphi_{1} \wedge \varphi_{2} .
$$

In particular, it does not contain negations and it only contains the atomic predicates < and =. Prove that existential Presburger formulas are equally expressive as Presburger formulas. Hint: Use Presburger's theorem.

Exercise 2: Parikh Images of Regular Languages

a) Prove that if $\mathcal{L} \in \operatorname{REG}_{\Sigma}$ is regular, $\Psi(\mathcal{L})$ is semilinear.
b) Prove that for each semilinear set $S \subseteq \mathbb{N}^{d}$, there is a regular language \mathcal{L} over $\Sigma=\left\{a_{1}, \ldots, a_{d}\right\}$ with $S=\Psi(\mathcal{L})$.
c) Let $l s b f^{-1}:\left(\mathbb{B}^{d}\right)^{*} \rightarrow \mathbb{N}^{d}$ be the map that takes a word of binary vectors w and returns the vector of natural numbers \vec{n} such that w is the "least significant bit first"-encoding of \vec{n}.

Present a regular language \mathcal{L} over \mathbb{B}^{d} such that

$$
\left\{l s b f^{-1}(w) \mid w \in \mathcal{L}\right\} \subseteq \mathbb{N}^{d}
$$

is not semilinear.

Exercise 3: Parikh Images of Context Free Languages

Use Parkihk's theorem to compute a representation for the semilinear set $\Psi(\mathcal{L}(G))$ for the grammar G which has the rules:
a) $S \rightarrow a b \mid X Z, Z \rightarrow S Y, X \rightarrow a, Y \rightarrow b$
b) $S \rightarrow X Y \mid \varepsilon, X \rightarrow a S b, Y \rightarrow b S c$

Exercise 4: Closure Properties of Semilinear Sets

a) Let $S=\bigcup_{i \in\{1, \ldots, k\}} \mathcal{L}\left(c_{i}, P_{i}\right) \subseteq \mathbb{N}^{d}$ be semilinear. Prove that semilinear sets are closed under Kleene iteration:

$$
\left\{v_{1}+\ldots+v_{t} \mid t \in \mathbb{N} \text { and } v_{1}, \ldots, v_{t} \in S\right\}=\bigcup_{J \subseteq\{1, \ldots, k\}} \mathcal{L}\left(\sum_{i \in J} c_{i}, \bigcup_{i \in J} p_{i} \cup\left\{c_{i}\right\}\right)
$$

b) To prove that semilinear sets are closed under intersection, we showed that the intersection of two linear sets $\mathcal{L}\left(c,\left\{u_{1}, \ldots, u_{m}\right\}\right)$ and $\mathcal{L}\left(d,\left\{v_{1}, \ldots, v_{n}\right\}\right) \subseteq \mathbb{N}^{d}$ is semilinear. We defined

$$
B=\left\{\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right) \in \mathbb{N}^{m+n} \mid \sum_{i=1}^{m} x_{i} u_{i}=\sum_{i=1}^{n} y_{i} v_{i}\right\} .
$$

Let s_{B} be the set of minimal elements of $B \backslash\{0\}$ with respect to the product order \leq^{d}, i.e. $u \leq^{d} v$ if $u_{c} \leq v_{c}$ for all $c \in\{1, \ldots, d\}$.

Prove that $B=\mathcal{L}\left(0, s_{B}\right)$.
Hint: You may use that \leq^{d} is well-founded.

