Advanced Automata Theory Exercise Sheet 6

Emanuele D'Osualdo Sebastian Schweizer TU Kaiserslautern Summer term 2016

Out: May 25, **Updated May 26:** Fixed bug in counter machine Ex. 1b

Due: May 30, 12:00

Exercise 1: Reversal-Bounded Counter Machines

Consider an *n*-counters machine where all the counters are unrestricted. The set of reachable vectors at a state q of a counter machine is the set $R(q) := \{\vec{v} \in \mathbb{N}^n \mid (q_0, 0) \to^* (q, \vec{v})\}$. The set of reachable vectors at a state q using at most k reversals is

$$R_k(q) := \left\{ \vec{v} \in \mathbb{N}^n \mid (q_0, 0) \xrightarrow{\leq k \text{ reversals}}^* (q, \vec{v}) \right\}.$$

- a) Prove that $R_k(q)$ is semilinear.
- b) Consider the following counter machine:

Show that $R(q) \supseteq R_1(q)$.

c) Compute a semilinear set representing $R_1(q)$ for the machine above.

Exercise 2: Naive Interpretation of NFAs as NBAs

Let $A = (\Sigma, Q, q_0, \to, Q_F)$ be an NFA with $\emptyset \neq L(A) \subseteq \Sigma^+$ and, for any two states $q, q' \in Q$, define $L_{q,q'}^{\neq \epsilon} := \{w \in \Sigma^+ \mid q \xrightarrow{w} q' \text{ in } A\}$. If $L_{\omega}(A)$ is the ω -regular language accepted by A (interpreted as an NBA), one can **wrongly** believe that $L_{\omega}(A) = L(A)^{\omega}$.

- a) Find a counterexample to $L_{\omega}(A) = L(A)^{\omega}$ when $\emptyset \neq L_{q,q}^{\neq \epsilon} \subseteq L(A)$ for all $q \in Q_F$.
- b) Show that if $L(A) = L^+$ for some regular language L, then $L_{\omega}(A) = L(A)^{\omega}$ holds. Update: That actually does not hold...
- c) Given an NFA A, provide a construction for an NBA A_{ω} such that $L(A_{\omega}) = L(A)^{\omega}$.

Exercise 3: NBA languages = ω -regular Languages

- a) Prove that ω -regular languages are NBA definable.
- b) Show that if there exists an NBA that accepts $L \subseteq \Sigma^{\omega}$ then L is ω -regular.
- c) Construct an NBA that accepts $L = (ab+c)^*((aa+b)c)^{\omega} + (a^*c)^{\omega}$.

Exercise 4: Shuffle ω -regular Languages

Given an infinite set of positions $I \subseteq \{0, 1, ...\}$ with $I = \{i_1, i_2, ...\}$ and $i_1 < i_2 < ...$, and an ω -word w, we write $w|_I$ for the ω -word $w(i_1)w(i_2)...$, i.e. the sub-word of w obtained by selecting the letters in the positions of I.

The fair shuffle of two ω -languages L_1, L_2 is defined as

$$L_1 \coprod L_2 := \{ w \mid \exists \text{ partition } I, J \text{ of positions } \{0, 1, \ldots \} \text{ such that } w|_I \in L_1 \text{ and } w|_J \in L_2 \}$$

Note in particular, that since I and J form a partition of the positions, $I \neq \emptyset \neq J$.

Show that ω -regular languages are closed under fair shuffle.

Exercise 5: Reachability in Counter Machines (Optional)

Adapting Parikh's proof, show that reachability in counter machines with one unrestricted counter and n r-reversal bounded counters is decidable.