
Advanced Automata Theory
Solutions for Exercise Sheet 6Emanuele D’Osualdo TU Kaiserslautern

Sebastian Schweizer Summer term 2016

Exercise 2: Naive Interpretation of NFAs as NBAs

Let A = (Σ, Q, q0,→, QF ) be an NFA with ∅ 6= L(A) ⊆ Σ+ and, for any two states q, q′ ∈ Q,

define L 6=εq,q′ := {w ∈ Σ+ | q w−→ q′ in A}. If Lω(A) is the ω-regular language accepted by A

(interpreted as an NBA), one can wrongly believe that Lω(A) = L(A)ω.

c) Given an NFA A, provide a construction for an NBA Aω such that L(Aω) = L(A)ω.

Solution:

We want to modify the automaton such that it accepts a word from L(A) and then goes back

to the start to accept the next one. Each iteration of this loop should see exactly one final

state. Then an accepting run for the NBA will contain infinitely many of these loop iterations,

i.e. accepts the concatenation of infinitely many words from L(A).

Construction. Consider an NFA A = (Σ, Q, q0, Qf , δ). We construct an NBA Aω =

(Σ, Q′, q′0, Q
′
f , δ
′) that accepts L(A)ω. We first need to make sure that the initial state does not

have any incoming transitions except for our loop. We therefore add a new state q′0 and set

Q′ = Q∪ {q′0}. The transition relation δ′ contains all the transitions from δ plus the following

added rules:

• δ′(q′0, a) = δ(q0, a) for all a ∈ Σ

Note: This is equivalent to adding an ε transition from q′0 to q0.

• δ′(q, a) 3 q′0 if δ(q, a) ∩Qf 6= ∅.
Note: This is equivalent to adding an ε transition from qf to q′0 for every qf ∈ Qf and

represents the loop we mentioned before.

The only final state shall be our added initial state: Q′f := {q′0}.
Figure 1 shows an example for the construction.

Proof.

L(Aω) ⊆ L(A)ω: Consider a word x ∈ L(Aω). There is an accepting run in Aω that contains

infinitely many occurrences of the only final state q′0:

q′0
x1−→ q′0

x2−→ q′0
x3−→ . . . with x = x1 · x2 · x3 . . . and xi 6= ε

Chose the xi such that the automaton does not visit q′0 in between. We show that

xi ∈ L(A), i.e. there is a run in A with q0
xi−→ qf ∈ Qf . This is sufficient to show

x ∈ L(A)ω.



q0

q1

q2

a

ba

b

NFA A

q′0

q0

q1

q2

a

ba

b

ε

ε

NBA Aω with ε transitions

q′0

q0

q1

q2

a

a

b

b

a

b

b

NBA Aω without ε transitions

Figure 1: Example construction for the language (ab∗)+

Split xi = a · y with a ∈ Σ and y ∈ Σ∗. If y is empty, then we have δ′(q′0, a) 3 q′0. Due to

our construction, we also have δ(q0, a) ∩Qf 6= ∅ such that A accepts xi = a.

If y is not empty, then we can split y = z · b with z ∈ Σ∗ and b ∈ Σ. We find states

q1, q2 ∈ Q with δ′(q′0, a) 3 q1, δ′∗(q1, z) 3 q2 and δ′(q2, b) 3 q′0. Due to our construction,

we immediately know that δ(q0, a) 3 q1 and δ′(q2, b) ∩Qf 6= ∅. But as we do not visit q′0

in between, we also have δ∗(q1, z) 3 q2. This completes the required run in A.

L(Aω) ⊇ L(A)ω: Consider a word x ∈ L(A)ω. Then x = x1 · x2 · x3 . . . with ε 6= xi ∈ L(A).

For every xi there is a run in A from q0 to a final state qf ∈ Qf , i.e. δ+(q0, xi) 3 qf .
Split xi = y · a with y ∈ Σ∗ and a ∈ Σ. We find a state q ∈ Q with δ∗(q0, y) 3 q and

δ(q, a) 3 qf . Due to our construction, we also have δ∗(q′0, y) 3 q and δ(q, a) 3 q′0. This

yields a run in Aω as q′0
xi−→ q′0.

We can combine these runs to a run for x in Aω:

q′0
x1−→ q′0

x2−→ q′0
x3−→ . . .

Since we visit the final state q′0 infinitely often, this proves that x ∈ L(Aω).

Exercise 5: Reachability in Counter Machines (Optional)

Adapting Parikh’s proof, show that reachability in counter machines with one unrestricted

counter and n r-reversal bounded counters is decidable.

Solution:

Let M = (Σ, Q, q0,→) be a counter machine with counters C = {c0, c1, . . . , cn} and Σ =

{inc, dec, zero} × C where c0 is unrestricted and c1, . . . , cn are r-reversal bounded. Let q ∈ Q
be a state that we want to check for reachability. The overall plan is as follows:



1. Using the algorithm from the lecture, we construct an equivalent counter machine M ′

with one unrestricted and n ∗
(

1 +
⌊r

2

⌋)
one-reversal bounded counters.

2. Using the approach from exercise 1a, we construct a one counter machine M ′′ over Σ.

The state space and transitions ensure that for each reversal bounded counter there is

only one increment phase followed by a decrement phase. For c0 we use the machine’s

unrestricted counter.

3. We show that for every one counter machine the set of reachable vectors R(q) is

semi-linear.

4. As in exercise 1a, we construct a semi-linear set SSL that contains all vectors with valid

numbers of increments, decrements and zero tests for each reversal bounded counter. We

intersect SSL with the semi-linear set R(q). The resulting set is semi-linear and therefore

reachability of q decidable.

Similarly to Parikh’s proof, point 2 extracts a machine that generates a language of possible

counter actions. The words of this language represent possible sequences of actions on all

the counters; the actions on the reversal-bounded counters respect the 1-reversal bound,

but may do more decreases than increases. This is corrected by representing the reachable

configurations as a Presburger formula, which is restricted to natural numbers. The words

in the language will however respect the actions on the unrestricted counter because they

correspond to actual effects on the counter of M ′′, which can make sure we only increment,

decrement and test for zero when it is legal to do so.

The difficult part is point 3. There are two possible approaches.

Alternative 1: Reduction to Parikh’s theorem via CF grammars

One can interpret the one-counter machine as a pushdown automaton which generates words

representing the possible actions on all the counters. A single special stack symbol # denotes

the bottom of the stack. Counter value n can be represented with a stack containing n symbols

A on top of #. Increment and decrement will add respectively remove an A, the zero test

will check that the top of the stack is #. Then with the standard triplet construction the

pushdown automaton can be transformed into a context-free grammar G generating the same

language. The proof is then a direct consequence of Parikh’s theorem applied to G.

Alternative 2: Adaptation of Parikh’s proof

The idea for an alternative, more direct, proof is as follows: we modify Parikh’s proof to

fit one counter machines. A run in a one counter machine is a sequence of transitions. A

configuration c = (q, n) contains a state q ∈ Q and the counter value n ∈ N.

We can split a run into two phases. In the first phase, a pump shall induce a sequence

(q, n) · τ · (q, n). For the second phase, we relax the condition for the counter value and a pump

should induce a sequence (q, n) · τ · (q, n′) with n ≤ n′. The idea is that in the first phase



pumps will restore the counter value. This ensures that a pump does not affect later zero

tests. In the second phase the counter value can increase and therefore it must not contain

any zero tests.

A pump is a triple (min,max, α) where

• min ∈ N is the minimal counter value that allows to apply the pump

• max ∈ N ∪ {∞} with max ≥ min is the maximal counter value that allows to apply

the pump and

• α ∈ (Q×{inc, dec, zero}×C ′)∗ is a sequence of states and actions on all counters of M ′.

The first and last state of a pump must be the same. Applying the pump induces a sequence

of a run where for each step the counter is adjusted accordingly. The minimal value must be

chosen such that all decrements in the pump can be applied without dropping the counter to

a negative value. The maximal value must be chosen such that the counter reaches 0 for zero

tests. Without zero tests, the maximal value will be ∞.

For the first phase of the run, pumps need to contain an equal number of increment and

decrement operations. For the second phase, pumps can contain more increments than

decrements. The maximal value for pumps in the second phase is always ∞.

We define � as the smallest reflexive transitive closure containing the following:

• (min1,max, α) � (min2,max, α) where min1 ≤ min2

• (min,max1, α) � (min,max2, α) where max1 ≥ max2

• (min1,max1, α) � (min2,max2, β · α · γ) where min2 + inc(β) − dec(β) ≤ min1 and

max2 + inc(β)− dec(β) ≥ max1 and β 6= ε ∨ γ 6= γ.

A basic pump is � minimal. We argue that our definition of � ensures that there are only

finitely many basic pumps. This allows to complete the proof.

Assume there are infinitely many basic pumps. Then there is a state q ∈ Q for which there

are infinitely many basic pumps that begin and end with q. But since there are only finitely

many states, these basic pumps must contain a repeating pattern that can be generated by

other pumps. This is a contradiction. For a detailed proof, we need to handle several cases for

both phases separately.

The rest of the proof follows the same scheme as Parikh’s.


