
Advanced Automata Theory
Exercise Sheet 10Emanuele D’Osualdo TU Kaiserslautern

Sebastian Schweizer Summer term 2016

Out: June 22 Due: June 27, 12:00

Exercise 1: Büchi Pushdown Systems

Solve the accepting run problem for the Büchi-pushdown system over Γ = {a, b} below:

p q r

b/ab

a/ba

b/ε

a/b

b/ab

b/ε

(a) Find all (s, γ) ∈ Q× Γ such that (s, γ)→+ (r, u)→∗ (s, γv) for some u, v ∈ Γ∗.

(b) Compute Apre∗(C) for C = {(s, γv) | v ∈ Γ∗, (s, γ) is a configuration found in (a)}.

Exercise 2: Model Checking BPDS

We extend Büchi Pushdown Systems to accept words from a finite input alphabet Σ = P(P) for

some finite set of propositions P . The automaton definition now includes an initial configuration

c0 and transitions are now labeled, i.e. they take the form q
γ/w : a−−−−→ q′ with q, q′ ∈ Q, γ ∈ Γ,

w ∈ Γ∗ and a ∈ Σ, with the corresponding semantic rule (q, γv)
a−→ (q′, wv). Note that the

constructions presented in the lecture are not affected by this change. The language of such a

BPDS P is L(P ) := {a0a1a2 . . . | c0
a0−→ c1

a1−→ c2
a2−→ . . . is an accepting run}.

a) Given an NBA A over Σ and a BPDS P over Σ, construct a BPDS P ‖ A over Σ with

L(P ‖ A) = L(A) ∩ L(P ).

b) Given an LTL formula ϕ and a BPDS P , show that L(P ) ⊆ L(ϕ) is decidable and comment

on the complexity.

Exercise 3: Modelling Recursive Programs with (B)PDSs

Consider the following pseudo-code:

def m() {

x = 1 - x;

if(x == input()) {

s();

m();

}

}

def s() {

x = 1 - x;

if(x != input()) {

m();

s();

}

}



Here, x is a global boolean variable (1 is true, 0 is false), input() randomly returns 0 or 1 (it

represents input from the user/environment modelled as non-determinism). Assume we start

the program by calling m() with x=0.

a) Design a PDS that models the given program. Use Γ = {s,m} to model the call stack.

b) Using a pre∗ construction, describe how you would decide that m and s are always called

in alternation.

c) We want to prove, using the method from Exercise 2, that if from some point on input()

only returns 0, then the program will halt. First, extend your model to a BPDS so that:

1. The PDS also uses an alphabet Σ = P(P) with P = {in0, in1, halt} as propositions.

2. Termination is modelled by going to a state that recognises ω-words satisfying halt.

[Hint: add a dummy symbol ⊥ to Γ to detect when the call stack is empty ]

Now formalise the property as an LTL formula: does the property hold?

Exercise 4: pre computation for PDS

Consider a PDS P and a P -NFA A.

a) Show how to construct a P -NFA A′ with CF(A′) = CF(A) that has no transition leading

to an initial state.

b) Show how to construct a P -NFA Apre with CF(Apre) = pre(CF(A)).

Prove that your construction is correct.


