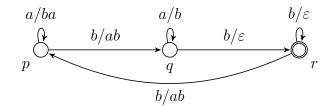
Advanced Automata Theory		
Emanuele D'Osualdo	Exercise Sheet 10	TU Kaiserslautern
Sebastian Schweizer		Summer term 2016
Out: June 22		Due: June 27, 12:00

Exercise 1: Büchi Pushdown Systems

Solve the accepting run problem for the Büchi-pushdown system over $\Gamma = \{a, b\}$ below:



- (a) Find all $(s, \gamma) \in Q \times \Gamma$ such that $(s, \gamma) \to^+ (r, u) \to^* (s, \gamma v)$ for some $u, v \in \Gamma^*$.
- (b) Compute $A_{\text{pre}^*(C)}$ for $C = \{(s, \gamma v) \mid v \in \Gamma^*, (s, \gamma) \text{ is a configuration found in (a)}\}$.

Exercise 2: Model Checking BPDS

We extend Büchi Pushdown Systems to accept words from a finite input alphabet $\Sigma = \mathbb{P}(\mathcal{P})$ for some finite set of propositions \mathcal{P} . The automaton definition now includes an initial configuration c_0 and transitions are now labeled, i.e. they take the form $q \xrightarrow{\gamma/w: a} q'$ with $q, q' \in Q, \gamma \in \Gamma$, $w \in \Gamma^*$ and $a \in \Sigma$, with the corresponding semantic rule $(q, \gamma v) \xrightarrow{a} (q', wv)$. Note that the constructions presented in the lecture are not affected by this change. The language of such a BPDS P is $L(P) := \{a_0 a_1 a_2 \dots \mid c_0 \xrightarrow{a_0} c_1 \xrightarrow{a_1} c_2 \xrightarrow{a_2} \dots$ is an accepting run $\}$.

- a) Given an NBA A over Σ and a BPDS P over Σ , construct a BPDS $P \parallel A$ over Σ with $L(P \parallel A) = L(A) \cap L(P)$.
- b) Given an LTL formula φ and a BPDS P, show that $L(P) \subseteq L(\varphi)$ is decidable and comment on the complexity.

Exercise 3: Modelling Recursive Programs with (B)PDSs

Consider the following pseudo-code:

Here, x is a global boolean variable (1 is true, 0 is false), input() randomly returns 0 or 1 (it represents input from the user/environment modelled as non-determinism). Assume we start the program by calling m() with x=0.

- a) Design a PDS that models the given program. Use $\Gamma = \{s, m\}$ to model the call stack.
- b) Using a pre^{*} construction, describe how you would decide that **m** and **s** are always called in alternation.
- c) We want to prove, using the method from Exercise 2, that if from some point on input() only returns 0, then the program will halt. First, extend your model to a BPDS so that:
 - 1. The PDS also uses an alphabet $\Sigma = \mathbb{P}(\mathcal{P})$ with $\mathcal{P} = \{in_0, in_1, halt\}$ as propositions.
 - 2. Termination is modelled by going to a state that recognises ω -words satisfying \Box halt. [*Hint: add a dummy symbol* \perp to Γ to detect when the call stack is empty]

Now formalise the property as an LTL formula: does the property hold?

Exercise 4: pre computation for PDS

Consider a PDS P and a P-NFA A.

- a) Show how to construct a *P*-NFA A' with CF(A') = CF(A) that has no transition leading to an initial state.
- b) Show how to construct a *P*-NFA A_{pre} with $CF(A_{pre}) = pre(CF(A))$. Prove that your construction is correct.