	Advanced Automata Theory	
Emanuele D'Osualdo	Exercise Sheet 11	TU Kaiserslautern
Sebastian Schweizer		Summer term 2016

Out: June 29

Exercise 1: Path Closure

Let $t: T \rightarrow \Sigma$ be a Σ-tree with maximum rank k and $D_{k}=\{0, \ldots, k-1\}$.
The path language $\pi(t) \subseteq\left(\Sigma \cup D_{k}\right)^{*}$ is defined inductively by

- if $\operatorname{rk}(t(\epsilon))=0$ (i.e. t is a leaf), then $\pi(t):=\{t(\epsilon)\}$
- if t has subtrees t_{0}, \ldots, t_{n}, then $\pi(t):=\bigcup_{i=0}^{n}\left\{t(\epsilon) \cdot i \cdot w \mid w \in \pi\left(t_{i}\right)\right\}$

For a tree language L, we define $\Pi(L):=\bigcup_{t \in L} \pi(t)$.
The path closure of L is $p c(L):=\{t \mid \pi(t) \subseteq \Pi(L)\}$.
L is path-closed if and only if $L=p c(L)$.
Example:

Then $\pi\left(t_{1}\right)=\{x 0 y, x 1 z\}, \pi\left(t_{2}\right)=\{x 0 z, x 1 y\}$ and $\Pi\left(\left\{t_{1}, t_{2}\right\}\right)=\{x 0 y, x 1 z, x 0 z, x 1 y\}$. The path closure $p c\left(\left\{t_{1}, t_{2}\right\}\right)$ contains t_{1}, t_{2} and additionally the trees

(a) Prove that if L is a regular tree language, then $\pi(L)$ is a regular language.
(b) Prove that if L is a regular tree language, then also $p c(L)$ is a regular tree language.
(c) Let L be a regular tree language. Prove that L is path-closed if and only if L is recognizable by a DTDTA.
(d) Is it decidable whether a regular tree language defined by a BUTA is path-closed?

Exercise 2: Finiteness of BUTA Tree Language

Show that it is decidable whether the tree language accepted by a given BUTA is finite. Hint: search for loops

Exercise 3: Boolean Satisfiability

Let $\Sigma=\{\wedge / 2, \vee / 2, \neg / 1,0 / 0,1 / 0, x / 0\}$.
(a) Give a deterministic BUTA that recognises the satisfiable Boolean formulas over x.
(b) Use (a) to establish whether $\neg(x \wedge 0) \vee(\neg x \wedge 1)$ and $(x \vee 0) \wedge(\neg x \wedge 1)$ are satisfiable.

Exercise 4: Tree Language Acceptance

Let $\Sigma=\{a / 2, b / 2, c / 0, d / 0\}$. Establish which of the following tree languages are accepted by some BUTA.
(a) $L_{1}:=\left\{t \in \mathcal{T}_{\Sigma} \mid\right.$ the path $\epsilon, 0,01,010,0101, \ldots$ in t contains an even number of a 's $\}$.
(b) $L_{2}:=\left\{t \in \mathcal{T}_{\Sigma} \mid t\right.$ is an unbalanced tree $\}$.
(c) $L_{3}:=\left\{t \in \mathcal{T}_{\Sigma} \mid\right.$ there are nodes u, v in t with $t(u)=c, t(v)=d$ and u is left of $\left.v\right\}$.
(d) $L_{4}:=\left\{t \in \mathcal{T}_{\Sigma} \mid\right.$ precisely 2016 of t 's leaves are labelled by $\left.c\right\}$.

Determine which of the languages above are also accepted by a deterministic TDTA.

