Out: May 10

Due: May 15, 12:00

Exercise 1: Quantifier Elimination

a) Eliminate the quantifiers of the following formula using the method described in class:

$$\neg \forall x \colon 3x < 2y \lor y < 2x$$

b) An existential Presburger formula is a formula as described by the following EBNF:

$$\varphi ::= t_1 < t_2 \mid t_1 = t_2 \mid \exists x \colon \varphi_1 \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 .$$

In particular, it does not contain negations and it only contains the atomic predicates < and =.

Prove that existential Presburger formulas are equally expressive as Presburger formulas.

Hint: Use Presburger's theorem.

Exercise 2: Parikh Images of Regular Languages

- a) Prove that if $\mathcal{L} \in \operatorname{REG}_{\Sigma}$ is regular, $\Psi(\mathcal{L})$ is semilinear.
- b) Prove that for each semilinear set $S \subseteq \mathbb{N}^d$, there is a regular language \mathcal{L} over $\Sigma = \{a_1, ..., a_d\}$ with $S = \Psi(\mathcal{L})$.
- c) Let $lsbf^{-1}: (\mathbb{B}^d)^* \to \mathbb{N}^d$ be the map that takes a word of binary vectors w and returns the vector of natural numbers \vec{n} such that w is the "least significant bit first"-encoding of \vec{n} .

Present a regular language \mathcal{L} over \mathbb{B}^d such that

$$\{lsbf^{-1}(w) \mid w \in \mathcal{L}\} \subseteq \mathbb{N}^d$$

is not semilinear.

Exercise 3: Parikh Images of Context Free Languages

Use Parkikh's theorem to compute a representation for the semilinear set $\Psi(\mathcal{L}(G))$ for the grammar G which has the rules:

- a) $S \to ab \mid XZ, \ Z \to SY, X \to a, \ Y \to b$
- b) $S \to XY \mid \varepsilon, X \to aSb, Y \to bSc$

Exercise 4: Closure Properties of Semilinear Sets

a) Let $S = \bigcup_{i \in \{1,...,k\}} \mathcal{L}(c_i, P_i) \subseteq \mathbb{N}^d$ be semilinear. Prove that semilinear sets are closed under Kleene iteration:

$$\{v_1 + \ldots + v_t \mid t \in \mathbb{N} \text{ and } v_1, \ldots, v_t \in S\} = \bigcup_{J \subseteq \{1, \ldots, k\}} \mathcal{L}\left(\sum_{i \in J} c_i, \bigcup_{i \in J} P_i \cup \{c_i\}\right).$$

b) To prove that semilinear sets are closed under intersection, we showed that the intersection of two linear sets $\mathcal{L}(c, \{u_1, \ldots, u_m\})$ and $\mathcal{L}(d, \{v_1, \ldots, v_n\}) \subseteq \mathbb{N}^d$ is semilinear. We defined

$$B = \left\{ (x_1, \dots, x_m, y_1, \dots, y_n) \in \mathbb{N}^{m+n} \middle| \sum_{i=1}^m x_i u_i = \sum_{i=1}^n y_i v_i \right\}.$$

Let s_B be the set of minimal elements of $B \setminus \{0\}$ with respect to the product order \leq^d , i.e. $u \leq^d v$ if $u_c \leq v_c$ for all $c \in \{1, \ldots, d\}$.

Prove that $B = \mathcal{L}(0, s_B)$.

Hint: You may use that \leq^d is well-founded.