	Advanced Automata Theory	
Prof Roland Meyer	Exercise Sheet 7	TU Braunschweig
Dr Prakash Saivasan		Summer term 2017

Out: May 24

Exercise 1: NBA Complementation

Consider the NBA A over $\Sigma=\{a, b\}$ below:

Use Büchi's complementation method discussed in class to compute $L(A)$ and $\overline{L(A)}$.

Exercise 2: Equivalence

Consider an NBA A, two classes $[u]_{\sim_{A}}$ and $[v]_{\sim_{A}}$ of \sim_{A}, and $w \in[u]_{\sim_{A}} \cdot[v]_{\sim_{A}}^{\omega}$ an ω-word. Show that if $w \in L(A)$ then $[u]_{\sim A} \cdot[v]_{\sim A}^{\omega} \subseteq L(A)$.

Exercise 3: Muller Automata

A Nondeterministic Muller Automaton (NMA) is a tuple $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$. The first four components are as in Büchi automata. $F=\left\{Q_{F}^{1}, \ldots, Q_{F}^{n}\right\} \subseteq \mathcal{P}(Q)$ is a set of sets of states instead of a single set of states. The idea is to accept a run if the set of states that occur infinitely often matches one of the Q_{F}^{i} exactly. Formally, a run r of A is accepting if $\operatorname{Inf}(r) \in F$ where $\operatorname{Inf}(r)$ is the set of states that are visited infinitely often in r. As for Büchi automata, we call A a Deterministic Muller Automaton (DMA) if for each $q \in Q$ and $a \in \Sigma$ there is exactly one state $q^{\prime} \in Q$ such that $\left(q, a, q^{\prime}\right) \in \delta$.
a) Given an NBA A, show that there is an NMA $A_{N M A}$ such that $L\left(A_{N M A}\right)=L(A)$.
b) Show that DMA are strictly more expressive than DBA.
c) Given a DMA A, show that there is an NBA $A_{N B A}$ such that $L\left(A_{N B A}\right)=L(A)$.
d) Prove that DMA are closed under complement, i.e. for every DMA A there exists a DMA \bar{A} with $L(\bar{A})=\overline{L(A)}$.

