	Advanced Automata Theory	
Prof Roland Meyer	Exercise Sheet 9	TU Braunschweig
Dr Prakash Saivasan		Summer term 2016

Out: June 13

Exercise 1: Büchi Pushdown Systems

Solve the accepting run problem for the Büchi-pushdown system over $\Gamma=\{a, b\}$ below:

(a) Find some/all $(s, \gamma) \in Q \times \Gamma$ such that $(s, \gamma) \rightarrow^{+}(r, u) \rightarrow^{*}(s, \gamma v)$ for some $u, v \in \Gamma^{*}$.
(b) Compute $A_{\operatorname{pre}^{*}(C)}$ for $C=\left\{(s, \gamma v) \mid v \in \Gamma^{*},(s, \gamma)\right.$ is a configuration found in (a) $\}$.

Exercise 2: Model Checking BPDS

We extend Büchi Pushdown Systems to accept words from a finite input alphabet $\Sigma=\mathbb{P}(\mathcal{P})$ for some finite set of propositions \mathcal{P}. The automaton definition now includes an initial configuration c_{0} and transitions are now labeled, i.e. they take the form $q \xrightarrow{\gamma / w: a} q^{\prime}$ with $q, q^{\prime} \in Q, \gamma \in \Gamma$, $w \in \Gamma^{*}$ and $a \in \Sigma$, with the corresponding semantic rule $(q, \gamma v) \xrightarrow{a}\left(q^{\prime}, w v\right)$. Note that the constructions presented in the lecture are not affected by this change. The language of such a BPDS P is $L(P):=\left\{a_{0} a_{1} a_{2} \ldots \mid c_{0} \xrightarrow{a_{0}} c_{1} \xrightarrow{a_{1}} c_{2} \xrightarrow{a_{2}} \ldots\right.$ is an accepting run $\}$.
a) Given an NBA A over Σ and a BPDS P over Σ, construct a BPDS $P \| A$ over Σ with $L(P \| A)=L(A) \cap L(P)$.
b) Given an LTL formula φ and a $\operatorname{BPDS} P$, show that $L(P) \subseteq L(\varphi)$ is decidable and comment on the complexity.

Exercise 3: Modelling Recursive Programs with (B)PDSs

Consider the following pseudo-code:

```
def m() {
    x = 1 - x;
    if(x == input()) {
        s();
        m();
    }
}
```

```
def s() {
    x = 1 - x;
    if(x != input()) {
        m();
        s();
    }
}
```

Here, x is a global boolean variable (1 is true, 0 is false), input () randomly returns 0 or 1 (it represents input from the user/environment modelled as non-determinism). Assume we start the program by calling $m()$ with $x=0$.
a) Design a PDS that models the given program. Use $\Gamma=\{s, m\}$ to model the call stack.
b) Using a pre* construction, describe how you would decide that m and s are always called in alternation.

Exercise 4: pre computation for PDS

Consider a PDS P and a P-NFA A.
a) Show how to construct a P-NFA A^{\prime} with $\mathrm{CF}\left(A^{\prime}\right)=\mathrm{CF}(A)$ that has no transition leading to an initial state.
b) Show how to construct a P-NFA $A_{\text {pre }}$ with $\mathrm{CF}\left(A_{\text {pre }}\right)=\operatorname{pre}(\mathrm{CF}(A))$.

Prove that your construction is correct.

