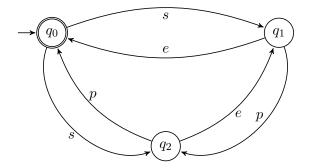
Exercises to the lecture Algorithmic Automata Theory Sheet 1

Dr. Prakash Saivasan Peter Chini


Delivery until 23.04.2018 at 12:00

Exercise 1.1 (Regular expression to NFA)

Transform the regular expression $a^*.b^+ \cup (a.b^*)^*$ into an NFA A without ε -transitions.

Exercise 1.2 (NFA to regular expression)

Find a regular expression for the language of the following automaton:

Exercise 1.3 (Arden's Lemma)

Consider the following extension of Arden's Lemma: If $U, V \subseteq \Sigma^*$ and $\varepsilon \in U$ then all solutions $L \subseteq \Sigma^*$ of the equation $L = UL \cup V$ are precisely the languages in the set $\mathcal{L} = \{U^*V' \mid V \subseteq V' \subseteq \Sigma^*\}.$

Prove the extension by solving a) and b) below:

- a) Show that if L is a solution of $L = UL \cup V$ then $L \in \mathcal{L}$.
- b) Show that every $L \in \mathcal{L}$ satisfies $L = UL \cup V$.

Exercise 1.4 (Languages and Formulas)

- a) Find a WMSO-formula φ such that $L(\varphi) = \Sigma^* a \Sigma^* b^+$.
- b) What is the language described by $\exists y \forall x \forall z \colon (x < y \land y < z) \to \neg P_a(x) \land P_b(y)$?

Delivery until 23.04.2018 at 12:00 into the box next to 343