Exercises to the lecture Algorithmic Automata Theory Sheet 3

Dr. Prakash Saivasan Peter Chini

Delivery until 08.05.2018 at 12:00

Exercise 3.1 (Extensions of WMSO)

a) Let us consider WMSO[<, suc, .], the set of WMSO-formulas extended by concatenation. This means if φ, ψ are WMSO[<, suc, .]-formulas, then $\varphi.\psi$ is also a WMSO[<, suc, .]-formula. Give semantics to concatenation (i.e. define when $\mathcal{S}(w), \mathcal{I} \models \varphi.\psi$ should be satisfied) so that

$$L(\varphi.\psi) = L(\varphi).L(\psi).$$

- b) Present a WMSO[<, suc] formula that is equivalent to $\varphi.\psi$.
- c) For some fixed alphabet Σ , let us consider WMSO[<, suc, $[a]_{a \in \Sigma}$], the set of WMSOformulas extended by an operator [a] for each symbol of the alphabet. If φ is a WMSO[<, suc, $[a]_{a \in \Sigma}$]-formula, then $[a]\varphi$ for any $a \in \Sigma$ is a WMSO[<, suc, $[a]_{a \in \Sigma}$]formula as well. Give semantics to $[a]\varphi$ so that

 $L([a]\varphi) = \{ w \in \Sigma^* \mid aw \in L(\varphi) \}.$

Exercise 3.2 (Ehrenfeucht-Fraïssé Games)

Let $n \in \mathbb{N}$ be arbitrary. Which is the maximal number of rounds $k \in \mathbb{N}$ such that the duplicator has a winning strategy for $G_k((ab)^{2n+1}, (ba)^{2n+1})$? *Hint:* First see what happens for n = 1 and n = 2.

Delivery until 08.05.2018 at 12:00 into the box next to 343