Applied Automata Theory (WS 2012/2013) Technische Universität Kaiserslautern

Exercise Sheet 3

Jun.-Prof. Roland Meyer, Reiner Hüchting, Georgel Călin Due: Tue, Nov 6 (noon)

Exercise 3.1

Suppose the logic WMSO[<, suc, \sqsubseteq] is obtained from WMSO[<, suc] by adding the predicate \sqsubseteq , which is interpreted as

 $S_w, I \models X \sqsubseteq Y :\iff$ for each $x \in I(X)$, there is a $y \in I(Y)$ such that $x \leq y$.

Extend the proof of Theorem Büchi II to $WMSO[<, suc, \sqsubseteq]$.

Exercise 3.2

Similar to \exists WMSO, we define *universal* WMSO, denoted by \forall WMSO, as the syntactic restriction of WMSO to formulas

$$\forall X_1 : \ldots \forall X_n : \varphi$$

where φ does not contain second-order quantification.

Show that a language is regular iff it is \forall WMSO-definable.

Exercise 3.3

In the lecture, a winning strategy for Duplicator was presented for $G_k(a^i, a^j)$, provided that $i \ge 2^k - 1$ and $j \ge 2^k - 1$.

- (a) Show, again by induction on k, that for any $u, v, w \in \Sigma^*$, there is a winning strategy for Duplicator for $G_k(uv^iw, uv^jw)$, if $i \ge 2^k 1$ and $j \ge 2^k 1$. (Your proof need not be more detailed than the one in the lecture).
- (b) Explain why there is no winning strategy for Duplicator when $i, j < 2^k 1$ and $i \neq j$. That is, *roughly* describe a winning strategy for Spoiler (neither a formal proof nor exact calculations are necessary here).

Exercise 3.4

Consider languages $(L_n)_{n\geq 2}$ with $L_n = (a+b)^*a(a+b)^{n-1}$ over $\Sigma = \{a, b\}$. Give an NFA A_n with n+1 states that accepts L_n and prove no DFA with less than 2^n states accepts it. *Hint: Think of words of length n over* Σ .