Applied Automata Theory (WS 2012/2013) Technische Universität Kaiserslautern

Exercise Sheet 8

Jun.-Prof. Roland Meyer, Reiner Hüchting, Georgel Călin Due: Tue, Dec 11 (noon)

Exercise 8.1 Disjunctive Well-Foundedness

Consider the following program over integer variables and the corresponding automaton:

A state S of this program is a vector giving a value to each variable. The execution of a command l_a or l_b leads to a labelled transition between states. For example:

$$S = (x = 2, y = 1) \xrightarrow{l_a} (1, 2) = S'.$$

One can show that between every pair of states $S \xrightarrow{w} S'$, where $w \in \{l_a, l_b\}^+$, one of the following relations holds:

T_1	$x > 0 \land x > x'$
T_2	$x+y > 0 \land x+y > x'+y'$
T_3	$y > 0 \land y > y'$

Show that this implies termination (from any starting state).

Exercise 8.2 Equivalence Classes as Circuit Boxes

Remember that, for any $u\in \Sigma^\omega$ and NBA A, $\mathrm{Box}(u)$ is defined as $R_{[u]_{\sim_A}}\cup R^{\mathrm{fin}}_{[u]_{\sim_A}}$.

- (a) Prove that $[u]_{\sim_A} = [v]_{\sim_A}$ if and only if $\operatorname{Box}(u) = \operatorname{Box}(v)$.
- (b) Prove that Box(uv) = Box(u); Box(v), where ";" glues boxes together.
- (c) Give an algorithm in pseudo code which computes all \sim_A equivalence classes (boxes).

Exercise 8.3 NBA Emptiness and Membership

Let A be an NBA and uv^{ω} be an ω -word. Give algorithms that decide whether:

$$L(A) = \emptyset \qquad \qquad uv^{\omega} \in L(A).$$

Exercise 8.4 NBA Complementation

Compute L(A) and $\overline{L(A)}$ for the NBA A below:

