Exercise Sheet 8

Jun.-Prof. Roland Meyer, Reiner Hüchting, Georgel Călin Due: Tue, Dec 11 (noon)

Exercise 8.1 Disjunctive Well-Foundedness

Consider the following program over integer variables and the corresponding automaton:

```
while \(x>0 \wedge y>0\) do
    \(\mathrm{l}_{\mathrm{a}}: \quad(\mathrm{x}, \mathrm{y}):=(\mathrm{x}-1, \mathrm{x}) \quad l_{a}:\) if \(x>0 \wedge y>0 \quad l_{b}:\) if \(x>0 \wedge y>0\)
or
    \(\mathrm{l}_{\mathrm{b}}: \quad(\mathrm{x}, \mathrm{y}):=(\mathrm{y}-2, \mathrm{x}+1)\)
endwhile
```

A state S of this program is a vector giving a value to each variable. The execution of a command l_{a} or l_{b} leads to a labelled transition between states. For example:

$$
S=(x=2, y=1) \xrightarrow{l_{a}}(1,2)=S^{\prime} .
$$

One can show that between every pair of states $S \xrightarrow{w} S^{\prime}$, where $w \in\left\{l_{a}, l_{b}\right\}^{+}$, one of the following relations holds:

$$
\begin{array}{ll}
T_{1} & x>0 \wedge x>x^{\prime} \\
T_{2} & x+y>0 \wedge x+y>x^{\prime}+y^{\prime} \\
T_{3} & y>0 \wedge y>y^{\prime}
\end{array}
$$

Show that this implies termination (from any starting state).

Exercise 8.2 Equivalence Classes as Circuit Boxes

Remember that, for any $u \in \Sigma^{\omega}$ and NBA $A, \operatorname{Box}(u)$ is defined as $R_{[u]_{\sim_{A}}} \cup R_{[u]_{\sim_{A}}}^{\mathrm{fin}}$.
(a) Prove that $[u]_{\sim_{A}}=[v]_{\sim_{A}}$ if and only if $\operatorname{Box}(u)=\operatorname{Box}(v)$.
(b) Prove that $\operatorname{Box}(u v)=\operatorname{Box}(u) ; \operatorname{Box}(v)$, where $" ;$ glues boxes together.
(c) Give an algorithm in pseudo code which computes all \sim_{A} equivalence classes (boxes).

Exercise 8.3 NBA Emptiness and Membership

Let A be an NBA and $u v^{\omega}$ be an ω-word. Give algorithms that decide whether:

$$
L(A)=\emptyset \quad u v^{\omega} \in L(A)
$$

Exercise 8.4 NBA Complementation

Compute $L(A)$ and $\overline{L(A)}$ for the NBA A below:

