Applied Automata Theory (WS 2012/2013)Technische Universität Kaiserslautern

Exercise Sheet 11

Jun.-Prof. Roland Meyer, Reiner Hüchting, Georgel Călin Due: Tue, Jan 15 (noon)

Exercise 11.1 PDS Modeling

Consider the following C-like code, in which int r() is a function that randomly returns 0 or 1. Give a pushdown system that models the program. Thereby, describe how you decided to represent the program counter and the value of variable x.

Hint: In a first step, assign each line in the code a unique label.

void m()	void s()	<pre>int x=0;</pre>
{	{	<pre>void main()</pre>
x=1;	x=0;	{
if(r()==1) s();	if(r()==1) m();	m();
}	}	}

Exercise 11.2 pre⁺ Method

The set $pre^+(C)$ can be calculated by determining $pre^*(C)$ and then $pre(pre^*(C))$. Thus, it may be necessary to have a method to compute pre(C) for a given set C. Present a general description of such a method. *Hint: Look at the example given in the lecture.*

Exercise 11.3 pre* Computation

Use the algorithm given in the lecture to determine $pre^*(C)$ in the pushdown system below, where $C = \{(q, w) \mid w \in \{\gamma, \delta\}^* \text{ and } |w| \text{ is even}\}.$

Exercise 11.4 pre* Computation

Compute A_{pre^*} starting from A (left) and P (right) given below.

