
Applied Automata Theory

Roland Meyer

TU Kaiserslautern

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 1 / 145

Table of Contents I
1 Regular Languages and Finite Automata

Regular Languages
Finite Automata
Equivalence
Determinism and Complementation
Decidability and Complexity

2 Weak Monadic Second-Order Logic
Syntax and Semantics of WMSO
Büchi’s Theorem

3 Star-free Languages
Ehrenfeucht-Fräıssé Games
Star-free Languages
McNaughton and Papert’s Theorem

4 Presburger Arithmetic
Syntax and Semantics of Presburger Arithmetic
Representing Solution Spaces
Quantifier Elimination

5 𝜔-Regular Languages and Büchi Automata
𝜔-Regular Languages
Büchi Automata
Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 2 / 145

Table of Contents II
Determinism

6 Linear-time Temporal Logic
Syntax and Semantics of LTL
From LTL to NBA

7 Model Checking Pushdown Systems
Syntax and Semantics of Pushdown Systems
Representation Structure: P-NFA
Computing Predecessors
Model Checking LTL

8 More on Infinite Words

9 Bottom-Up and Top-Down Tree Automata
Syntax and Semantics of Bottom-Up Tree Automata
Determinism and Complementation

10 XML Schema Languages
Document Type Definitions
Unranked Trees and Hedge Automata

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 3 / 145

Part A Finite Words

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 4 / 145

1. Regular Languages and Finite Automata

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 5 / 145

Basic Notions

Definition (Words)

Finite alphabet = finite set of letters Σ = {a, b, c , . . . , n}
Finite word over Σ = finite sequence of letters w = a0 · . . . · an−1 with ai ∈ Σ
for all i ∈ [0, n − 1]

Length of word w is |w | := n

Empty word 𝜀 with |𝜀| := 0

i-th symbol in w denoted by w(i) := ai

Set of all finite words over Σ is Σ*

Set of all non-empty words over Σ is Σ+ := Σ* ∖ {𝜀}
Concatenation of words w , v ∈ Σ* is w · v ∈ Σ*

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 6 / 145

Basic Notions

Definition (Languages and operations)

Language is a (typically infinite) set L ⊆ Σ*

Set-theoretic operations apply to languages L1, L2 ⊆ Σ*:

L1 ∪ L2
union

L1 ∩ L2
intersection

L1 ∖ L2
difference

L1 := Σ* ∖ L1
complement

Concatenation L1 · L2 := {w · v ∈ Σ* | w ∈ L1 and v ∈ L2}
Kleene star L* :=

⋃︀
i∈N Li with L0 := {𝜀} and Li+1 := L · Li for all

i ∈ N := {0, 1, 2, . . .}.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 7 / 145

Regular Languages

Definition (Regular languages)

The class of regular languages over alphabet Σ, denoted by REGΣ, is the smallest
class of languages that satisfies

(1) ∅ ∈ REGΣ and {a} ∈ REGΣ for all a ∈ Σ and

(2) if L1, L2 ∈ REGΣ then also L1 ∪ L2, L1 · L2, L*1 ∈ REGΣ.

So every regular language is obtained by application of finitely many operations in
(2) from the languages in (1).

Notation
Avoid brackets: * binds stronger than · binds stronger than ∪
Write {a} as a

Example: 𝜀 ∪ (a ∪ b)* · b. We have 𝜀 since {𝜀} = ∅*.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 8 / 145

Closure Properties of Regular Languages

Observation
Finite sets of words form regular languages

Regular languages not closed under infinite unions

By definition, regular languages closed under *, ·, ∪

Goal

Show that REGΣ also closed under remaining operations on sets: ∩, , ∖.
Note that L1 ∖ L2 = L1 ∩ L2.

Need alternative characterization of regular languages

It is not only about proving closure: need a representation where operations
can be computed efficiently

Languages are infinite sets. Finite representations not always easy to find
(one of the sports of TCS)

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 9 / 145

Finite Automata: Syntax

Definition (Finite automaton)

A non-deterministic finite automaton (NFA) is a tuple A = (Σ,Q, q0,→,QF) with

alphabet Σ,

finite set of states Q, initial state q0 ∈ Q, final states QF ⊆ Q, and

transition relation → ⊆ Q × Σ ×Q. Write q
a−→ q′ rather than (q, a, q′) ∈ →.

Size of A is |A| := |Σ| + |Q| + 1 + |QF | + | −→ |. Note

|A| ≤ |Σ| + |Q| + 1 + |Q| + |Q|2|Σ| ∈ O(|Q|2|Σ|).

For Σ fixed, this is in O(|Q|2). Number of states is important.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 10 / 145

Finite Automata: Semantics

Definition (Run and language)

Run of A = (Σ,Q, q0,→,QF) is a sequence

q0
a0−→ q1

a1−→ . . . qn−1
an−1−−−→ qn.

Also say this is a run of A on word w := a0 . . . an−1.

We write q0
w−→ qn if there are intermediary states.

Run is accepting if qn ∈ QF .
Language of A is

L(A) := {w ∈ Σ* | q0
w−→ q with q ∈ QF}.

If L = L(A) we say L is accepted or recognized by automaton A.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 11 / 145

From Regular Languages to Finite Automata

Goal
Show that regular languages are recognizable by NFAs.

Idea
Apply operations from REG to NFAs.

Proposition (NFA languages are closed under · and ∪)
Consider two NFAs A1 and A2.

(1) There is an NFA A1 · A2 so that L(A1 · A2) = L(A1) · L(A2).

(2) There is an NFA A1 ∪ A2 so that L(A1 ∪ A2) = L(A1) ∪ L(A2).

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 12 / 145

From Regular Languages to Finite Automata

Proposition (NFA languages are closed under *)

Consider an NFA A. There is an NFA A* with L(A*) = L(A)*.

Construction

Let A = (Σ,Q, q0,→,QF). Define

A* := (Σ,Q ∪ {q′0}), q′0,−→ ∪ −→′,QF ∪ {q′0})

where q′0
a−→

′
q if q0

a−→ q and qf
a−→

′
q if q0

a−→ q for all qf ∈ QF .

An illustration is given in the handwritten notes.

Theorem

If L ∈ REGΣ then there is an NFA A with L = L(A).

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 13 / 145

From Finite Automata to Regular Languages

Goal
Show the reverse: NFA languages are regular.

Idea
Represent NFA with n ∈ N states by system of n equations

Solve this system using Arden’s lemma

Lemma (Arden 1960)

Let U,V ⊆ Σ* with 𝜀 /∈ U. Consider L ⊆ Σ*. Then

L = U · L ∪ V iff L = U* · V .

Proof.
Please see the handwritten notes.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 14 / 145

From Finite Automata to Regular Languages

Observation

Only-if direction (⇒) in Arden’s lemma means such an equation has a unique
solution.

Use this as tool to construct regular language for a given NFA.

Theorem
If L is recognized by an NFA, then L is regular.

Proof sketch.
Please see the handwritten notes.

Example

Please see the handwritten notes.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 15 / 145

Deterministic Finite Automata

Definition

An NFA A = (Σ,Q, q0,−→,QF) is called deterministic or DFA if for all a ∈ Σ and
all q ∈ Q

there is precisely one state q′ ∈ Q with q
a−→ q′.

Deterministic automata are convenient in applications.

Goal

Show that for every NFA A there is a deterministic finite automaton A′ with
L(A) = L(A′).

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 16 / 145

Powerset Construction

Theorem (Rabin & Scott 1959)

For every NFA A with n ∈ N states there is a DFA A′ with at most 2n states that
satisfies L(A) = L(A′).

Construction: Powerset

Let A = (Σ,Q, q0,−→,QF). Set A′ := (Σ,P(Q), {q0},−→′,Q ′
F) with

Q1
a−→

′
Q2 where Q2 := {q2 ∈ Q | q1

a−→ q2 for some q1 ∈ Q1}

and moreover

Q ′
F := {Q ′ ⊆ Q | Q ′ ∩ QF ̸= ∅}.

Note that A′ is deterministic. For every a ∈ Σ and Q1 ⊆ Q there is a goal state
(which may be ∅ ∈ P(Q)). This goal state is unique.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 17 / 145

Closure under Complementation

Consequence of Rabin & Scott: closure of regular languages under
complementation

Note

Consider NFA A. It is not easy to find NFA for L(A). Why?

L(A) = w ∈ Σ* so that there is an accepting run of A on w .

L(A) = w ∈ Σ* so that all runs of A on w do not accept.

To give an automaton for L(A), we thus have to translate this ∀-quantifier into an
∃-quantifier. For DFAs A′, this works:

L(A′) = w ∈ Σ* so that there is an accepting run of A′ on w .

L(A′) = w ∈ Σ* so that there is a run of A′ on w that does not accept.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 18 / 145

Closure under Complementation

Proposition (Closure under)

Consider a DFA A. Then there is a DFA A with L(A) = L(A).

Construction: Swap final states

Let A = (Σ,Q, q0,→,QF). Define A := (Σ,Q, q0,→,Q ∖ QF).

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 19 / 145

Summary

Summary

Let L = L(A) for an NFA A with n ∈ N states

There are DFAs for L and L with at most 2n states

The bound is optimal: there is a family (Ln)n∈N of languages Ln that

are recognized by an NFA with n + 1 states but
that cannot be recognized by a DFA with < 2n states.

Only considering states reachable from q0 often yields much smaller automata

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 20 / 145

Decidability and Complexity

Problems
Consider an NFA A.

Emptiness: L(A) = ∅?

Universality: L(A) = Σ*?

Membership: Given also w ∈ Σ*. Does w ∈ L(A) hold?

Focus on emptiness and reduce remaining problems to it

More Decidable Problems

Intersection: L(A1) ∩ L(A2) = ∅?

Equivalence: L(A1) = L(A2)?

Inclusion: L(A1) ⊆ L(A2)?

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 21 / 145

Emptiness

Theorem

Emptiness for NFAs can be solved in time O(| → |).

Idea
Compute reachable states R0 ⊆ R1 ⊆ . . . until fixed point Rk = Rk+1

Proof.

Let A = (Σ,Q, q0,−→,QF). Define R0 := {q0} and

Ri+1 := Ri ∪ {q′ ∈ Q | q ∈ Ri and q
a−→ q′ for some a ∈ Σ}

Consider k ∈ N with Rk = Rk+1. If Rk ∩ QF ̸= ∅ return L(A) not empty.
Otherwise return L(A) empty.

Reaches fixed point after at most |Q| steps. Gives O(|Q|| → |).

Sufficient to use each q
a−→ q′ at most once. Linear in | −→ |.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 22 / 145

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 23 / 145

2. Weak Monadic Second-Order Logic

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 23 / 145

Weak Monadic Second-Order Logic

Goal

NFAs (and also regular languages) operational models
Logics are declarative: specifications often more intuitive and more concise

Solve decidability problems in logic: satisfiability and validity

With automata: emptiness checks

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 24 / 145

WMSO: Syntax

Fix alphabet Σ (parameter of the logic)

Need signature Sig = (Fun,Pred)

Here, purely relational signature with Fun = ∅
Define Pred := {< /2, suc/2} ∪ {Pa/1 | a ∈ Σ}.

Consider two countably infinite sets

V1 = {x , y , z , . . .} of first-order variables

V2 = {X ,Y ,Z , . . .} of second-order variables

Definition (Syntax of WMSO)

Formulas in WMSO (over Sig ,V1,V2) are defined by

𝜙 ::= x < y p suc(x , y) p Pa(x)⏟ ⏞
Predicates from signature

p X (x) p ¬𝜙 p 𝜙1 ∨ 𝜙2 p ∃x : 𝜙 p ∃X : 𝜙

where x , y ∈ V1 and X ∈ V2.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 25 / 145

WMSO: Syntax

Definition (Notation and abbreviations)

Notation to make signature explicit:

WMSO = WMSO[<, suc]: all WMSO formulas

WMSO[<],WMSO[suc]: formulas that only use predicates < and suc

FO[<, suc],FO[<],FO[suc]: first-order formulas (over V1, only)

Abbreviations: Let 𝜙,𝜓 ∈ WMSO. We set

𝜙 ∧ 𝜓 := ¬(¬𝜙 ∨ ¬𝜓) 𝜙→ 𝜓 := ¬𝜙 ∨ 𝜓
∀x : 𝜙 := ¬∃x : ¬𝜙 ∀X : 𝜙 := ¬∃X : ¬𝜙
x ≤ y := ¬(y < x) x = y := x ≤ y ∧ y ≤ x

first(x) := ¬∃y : y < x last(x) := ¬∃y : x < y

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 26 / 145

WMSO: Syntax

Definition (Bound and free variables)

Consider formula 𝜙 ∈ WMSO.

Variable x ∈ V1 is bound in 𝜙 if syntax tree contains occurrence of ∃x above
x . Similar for X ∈ V2.

Variable that occurs in 𝜙 and is not bound is free in 𝜙

Write 𝜙(x1, . . . , xm,X1, . . .Xn) to indicate that free variables of 𝜙 among
x1, . . . ,Xn

Formula without free variables called closed or sentence

Assume bound and free variables disjoint. Can always be achieved by
𝛼-conversion of bound variables:

(Bad) x < z ∧ ∀x : x < y x < z ∧ ∀x ′ : x ′ < y (Good)

Example
¬∃y : y < x y bound, x free, notation first(x)

∃x : first(x) ∧ X (x) x bound, X free

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 27 / 145

WMSO: Semantics

Intuitive meaning

First-order variables: natural numbers N (positions in a word)

x < y , suc(x , y): usual < and successor on N
Second-order variables: finite sets of natural numbers

X (x): x is in set X

What does WMSO stand for?
W = Weak: quantify over finite sets

M = monadic: quantify over elements of the domain. Polyadic =
quantify over tuples.

SO = second-order: with quantification over sets of elements.
Third-order with quantification over sets of sets of elements.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 28 / 145

WMSO: Semantics

Example

∃X : (∃x : first(x) ∧ X (x)) ∧ (∀x : X (x) → ∃y : x < y ∧ X (y))

There is a finite set of natural numbers

that contains 0 (and thus is not empty) and

for every element contains a larger one.

Such a set has to be infinite

Formula is unsatisfiable

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 29 / 145

WMSO: Semantics

To give semantics, need Sig -structures S = (DS , <S , sucS , (Pa
S)a∈Σ) with

DS = domain of elements (to talk about and quantify over)

PS
a ⊆ DS , <S , sucS ⊆ DS × DS = interpretation of predicate symbols

Restrict ourselves to particular Sig -structures that are associated to words

Definition (Word structures)

Let w ∈ Σ*. Its word structure is S(w) := (Dw , <w , sucw , (Pw
a)a∈Σ) with

Dw := {0, . . . , |w | − 1} <w := <N ∩ (Dw × Dw)

sucw := {(0, 1), . . . , (|w | − 2, |w | − 1)} Pw
a := {k ∈ Dw | w(k) = a}

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 30 / 145

WMSO: Semantics

Definition (Satisfaction relation |= for WMSO)

Let w ∈ Σ* and 𝜙 ∈ WMSO. To define whether 𝜙 holds in S(w), need an
interpretation I : V1 ∪ V2 9 Dw ∪ P(Dw) that assigns (sets of) positions to free
variables in 𝜙 (maybe to others, not important). With this:

S(w), I |= Pa(x) if Pw
a (I (x))

S(w), I |= suc(x , y) if sucw (I (x), I (y))

S(w), I |= x < y if I (x) <w I (y)

S(w), I |= X (x) if I (x) ∈ I (X)

S(w), I |= ¬𝜙 if S(w), I ̸|= 𝜙

S(w), I |= 𝜙1 ∨ 𝜙2 if S(w), I |= 𝜙1 or S(w), I |= 𝜙2

S(w), I |= ∃x : 𝜙 if there is k ∈ Dw so that S(w), I [k/x] |= 𝜙

S(w), I |= ∃X : 𝜙 if there is M ⊆ Dw (potentially empty)

so that S(w), I [M/X] |= 𝜙.

Here, I [k/x](x) := k and I [k/x](y) := I (y) for y ̸= x . Similar for X .

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 31 / 145

WMSO: Semantics

Definition (Equivalence)

Two formulas 𝜙,𝜓 ∈ WMSO are called equivalent, denoted by 𝜙 ≡ 𝜓, if for all
w ∈ Σ* and all I : V1,V2 9 Dw ∪ P(Dw) we have

S(w), I |= 𝜙 iff S(w), I |= 𝜓.

Remark

The empty word 𝜀 has the empty word structure with D𝜀 = ∅.

The empty word does not satisfy first-order existential quantifiers.
It does satisfy all first-order universal quantifiers:

S(𝜀) ̸|= ∃x : x = x S(𝜀) |= ∀x : ¬(x = x)

The empty word does satisfy second-order existential quantifiers

S(𝜀) |= ∃X : ∀x : X (x) → Pa(x)

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 32 / 145

WMSO: Semantics

Interested in closed formulas

For 𝜙 closed, S(w), I |= 𝜙 does not depend on I

Yet need I for satisfaction of subformulas

Definition (Satisfiability, validity, model)

Consider closed formula 𝜙 ∈ WMSO

Say 𝜙 is satisfiable if there is w ∈ Σ* so that S(w) |= 𝜙

In this case, call S(w) a model of 𝜙

Formula without model is unsatisfiable

If S(w) |= 𝜙 for all w ∈ Σ*, then 𝜙 is valid

Observation
𝜙 is valid iff ¬𝜙 is unsatisfiable.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 33 / 145

WMSO: Semantics

Set of words that satisfy a formula form a language

Definition (Language defined by 𝜙, definability)

Consider closed formula 𝜙 ∈ WMSO. The language defined by 𝜙 is

L(𝜙) := {w ∈ Σ* | S(w) |= 𝜙}.

Language L ⊆ Σ* is WMSO-definable if there is a formula 𝜙 ∈ WMSO with
L = L(𝜙).

Notions WMSO[suc],WMSO[<],FO[suc],FO[<]-definable by restricting 𝜙.

Example

Please see the handwritten notes.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 34 / 145

First Hierarchy of Languages

Distinguish between
FO[suc],FO[<],FO[<, suc],WMSO[suc],WMSO[<],WMSO[<, suc]-definability

Lemma

L is FO[<, suc]-definable iff L is FO[<]-definable (1)

L is WMSO[<, suc]-definable iff L is WMSO[<]-definable (2)

L is WMSO[<, suc]-definable iff L is WMSO[suc]-definable (3)

L is WMSO[<, suc]-definable iff L is WMSO0-definable. (4)

WMSO0 = WMSO without first-order variables but with new predicates:

X ⊆ Y ,Sing(X),Suc(X ,Y),X ⊆ Pa with a ∈ Σ

Meaning: X is subset of Y , X is a singleton set, X and Y are singletons X = {x}
and Y = {y} with suc(x , y), all positions in X have letter a.

WMSO vs. FO: later. FO[suc] vs. FO[<]: not this lecture.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 35 / 145

From Finite Automata to WMSO

Goal
Establish REG = WMSO-definable.

First Subgoal: ⊆
Show that regular languages are definable in WMSO

Theorem (Büchi I, 1960)

Let A be an NFA. We can effectively construct a WMSO-formula 𝜙A so that
L(𝜙A) = L(A).

Proof.
Please see handwritten notes.

Example

Please see handwritten notes.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 36 / 145

From WMSO to Finite Automata

Second Subgoal: ⊇
Show that WMSO-definable languages are regular

To this end, represent all models of a WMSO-formula by an NFA

Approach

Proceed by induction on structure of 𝜙

Problem

∃X : 𝜙(X) is closed but 𝜙(X) contains X free

Theorem (Büchi II, 1960)

Let 𝜙 ∈ WMSO. We can effectively construct an NFA A𝜙 that satisfies
L(A𝜙) = L(𝜙).

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 37 / 145

Büchi’s Theorem

Theorem (Büchi I+II, 1960)

A language L ⊆ Σ* is regular iff it is WMSO-definable.

Corollary

It is decidable whether a WMSO-formula is satisfiable/valid.

Worst-case complexity of automata construction

Consider NFAs A and B with at most n ∈ N states.

A ∪ B 2n + 1 states A 2n states 𝜋x(A) n states.

Thus, formula with k ∈ N connectives may yield automaton of size

22
. .

.2
c

⏟ ⏞
k-times

with c ∈ N.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 38 / 145

Consequences of Büchi’s Theorem

Observation
Construction from NFAs to WMSO gave formulas of particular shape.
Existential WMSO, denoted by ∃WMSO, is restriction of WMSO to formulas

∃X0 : . . . ∃Xn : 𝜙,

where 𝜙 does not contain second-order quantification.

Corollary

Every closed formula 𝜙 ∈ WMSO has an equivalent closed formula 𝜓 ∈ ∃WMSO.
Thus a language is WMSO-definable iff it is definable in ∃WMSO.

Proof.
Let 𝜙 ∈ WMSO. Build A𝜙 with Büchi II. Build 𝜓 = 𝜙A𝜙 with Büchi I.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 39 / 145

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 40 / 145

3. Star-free Languages

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 40 / 145

Star-free Languages

Goals

(1) Show that FO[<] defines a strict subclass of regular languages

(2) Find alternative characterization:

FO[<]-definable iff represented by star-free regular expression

Recapitulation

First-order formulas are WMSO-formulas without second-order variables
Example over Σ = {a, b, c}:

𝜙 := ∀x : Pa(x) → ∃y : x < y ∧ Pb(y)

States that every letter a is followed by a letter b:

L(𝜙) = {a, b, c}* · b · {b, c}* ∪ {b, c}*

Note: first(x), last(x), x = y still in FO[<]

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 41 / 145

Star-free Languages

Towards Goal (1)

Known: FO[<]-definable languages are regular

Show: Language (aa)* is not FO[<]-definable:

For all 𝜓 ∈ FO[<] we have L(𝜓) ̸= (aa)*.

Hence: FO[<]-definable languages form strict subclass of regular languages

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 42 / 145

Ehrenfeucht-Fräıssé Games
Tool from finite model theory (logic) for proving inexpressibility results

The game — informally

Set-up:

Two players: spoiler and duplicator

Two words: v and w over Σ

Number of rounds: k ∈ N
Potentially some existing edges between positions

Per round

Spoiler selects position in v or w

Duplicator selects fresh position in other word and connects them by a line
I Positions must have same letter (preserve Pa)
I New line not allowed to cross existing lines (preserve <)

Next round

Winning

Duplicator loses if cannot reply

Duplicator wins if number of rounds passes without loss

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 43 / 145

Ehrenfeucht-Fräıssé Games

Definition (Partial isomorphism between word structures)

Consider S(v) and S(w). A partial isomorphism between S(v) and S(w) is a
partial function p : Dv 9 Dw so that

(1) Function p is injective.

(2) For all x ∈ dom(p) and all a ∈ Σ we have Pv
a (x) iff Pw

a (p(x)).

(3) For all x , y ∈ dom(p) we have x <v y iff p(x) <w p(y).

Let s = (s1, . . . , sn) and t = (t1, . . . , tn) two vectors of positions in Dv and Dw .
Write s ↦→ t for partial function p := {(s1, t1), . . . , (sn, tn)}.

Understanding requirements (1) to (3) wrt. informal game

(1) = fresh position (2) = identical labels (3) = no crossing edges

Interpretation of EF-games

Let S(v),S(w) two word structures with designated positions s, t

Duplicator tries to establish partial isomorphism, starting from s ↦→ t

Spoiler tries to avoid this
Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 44 / 145

Ehrenfeucht-Fräıssé Games

Definition (EF-Game)

Consider S(v),S(w) with s, t vectors of positions in Dv and Dw . Let k ∈ N.
An EF-game Gk((S(v), s), (S(w), t)) has the following elements and rules:

k rounds

Initial configuration s ↦→ t

Given configuration r , a round consists of the following moves:
I Spoiler chooses s ∈ Dv or t ∈ Dw

I Duplicator chooses t ∈ Dw or s ∈ Dv

I Game continues with r ∪ {(s, t)} as new configuration

Duplicator wins k rounds if last configuration is partial isomorphism.
Duplicator wins Gk((S(v), s), (S(w), t)) if has a winning strategy: whatever
moves spoiler does, duplicator can win k rounds.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 45 / 145

Ehrenfeucht-Fräıssé Theorem

Where is this going?

Now we know what an EF-game does: compares word structures S(v) and S(w).
So what? Overall goal is EF-theorem:

duplicator wins Gk((S(v), s), (S(w), t)) iff v and w cannot be distinguished
by FO[<]-formulas of quantifier-depth ≤ k.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 46 / 145

Ehrenfeucht-Fräıssé Theorem

Definition (Quantifier-depth)

The quantifier-depth qd(𝜙) with 𝜙 ∈ FO[<] is the maximal nesting depth of
quantifiers in 𝜙:

qd(x < y) := 0 qd(Pa(x)) := 0

qd(¬𝜙) := qd(𝜙) qd(𝜙1 ∨ 𝜙2) := max{qd(𝜙1), qd(𝜙2)}
qd(∃x : 𝜙) := 1 + qd(𝜙)

Definition (k-equivalence)

Consider S(v),S(w) with s, t. Then (S(v), s) and (S(w), t) are k-equivalent,
denoted (S(v), s) ≡k (S(w), t), if for all 𝜙(x) with qd(𝜙) < k we have

S(v), I [s/x] |= 𝜙 iff S(w), I [t/x] |= 𝜙.

In the case of empty sequences s = 𝜀 = t, equivalence S(v) ≡k S(w) means the
structures satisfy same sentences of quantifier-depth up to k.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 47 / 145

Ehrenfeucht-Fräıssé Theorem

Theorem (Ehrenfeucht, Fräıssé, 1954, 1961)

Duplicator wins Gk((S(v), s), (S(w), t)) iff (S(v), s) ≡k (S(w), t).

Why is this cool?

Because it gives a pumping argument!

Proposition

Language (aa)* is not FO[<]-definable.

Lemma

Duplicator wins Gk(a2
k

, a2
k+1).

Proof (of lemma and proposition).

Please see the handwritten notes.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 48 / 145

Proof of the Ehrenfeucht-Fräıssé Theorem

Lemma (How to win an EF-game?)

(1) Duplicator wins G0((S(v), s), (S(w), t)) iff s ↦→ t is a partial isomorphism.

(2) Duplicator wins Gk+1((S(v), s), (S(w), t)) iff

(2.a) ∀s ∈ Dv : ∃t ∈ Dw : Duplicator wins Gk((S(v), s.s), (S(w), t.t)) and
(2.b) ∀t ∈ Dw : ∃s ∈ Dv : Duplicator wins Gk((S(v), s.s), (S(w), t.t)).

Intuition

Gk((S(v), s.s), (S(w), t.t)) gives arbitrary first step in Gk+1((S(v), s), (S(w), t)).

Proof (of Ehrenfeucht-Fräıssé Theorem).

Please see the handwritten notes.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 49 / 145

Star-free Languages

Towards Goal (2)

Find subclass of REG that characterizes FO[<]-definable languages

Want algebraic characterization (as opposed to logical) that highlights
closure properties

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 50 / 145

Star-free Languages

Definition (Star-free Languages)

The class of star-free languages over alphabet Σ, denoted by SFΣ, is the smallest
class of languages that satisfies

(1) ∅, {𝜀} ∈ SFΣ and {a} ∈ SFΣ for all a ∈ Σ and

(2) if L1, L2 ∈ SFΣ then also L1 ∪ L2, L1 · L2, L1 ∈ SFΣ.

Remark
Complement is not an operator on REG, but it can be derived.

Complement may yield * in alternative representations of the language.

Example

Please see handwritten notes.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 51 / 145

From Star-free Languages to FO[<]

Goal

Establish SF = FO[<]-definable.

Theorem (McNaughton and Papert I, 1971)

Let L ∈ SFΣ. We can effectively construct a FO[<]-formula 𝜙L so that L(𝜙L) = L.

Proof.
Homework.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 52 / 145

From FO[<] to Star-free Languages

Goal ⊇
Establish SF ⊇ FO[<]-definable.

Insights

Relation ≡k has finite index, i.e., finitely many classes.

Every class of ≡k can be characterized by single formula.

With this, give inductive construction of SF-representation for FO[<]-defined
language.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 53 / 145

From FO[<] to Star-free Languages

Lemma

Consider structures (S(s), s) with |s| = n ∈ N. For every k ∈ N, equivalence ≡k

has finite index.

Proof.
Please see handwritten notes.

Lemma

For every equivalence class [(S(v), s)]≡k
there is a formula 𝜙[(S(v),s)]≡k

of

qd(𝜙[(S(v),s)]≡k
) ≤ k so that

(S(w), t) ∈ [(S(v), s)]≡k
iff S(w), I [t/x] |= 𝜙[(S(v),s)]≡k

.

Proof.
Please see handwritten notes.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 54 / 145

McNaughton and Papert’s Theorem

Theorem (McNaughton and Papert II, 1971)

Let 𝜙 an FO[<] sentence. We can effectively construct L ∈ SFΣ so that L(𝜙) = L.

Proof.
Please see handwritten notes.

Theorem (McNaughton and Papert I+II, 1971)

A language L ⊆ Σ* is star-free iff it is FO[<]-definable.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 55 / 145

The World of Finite Words ... as we know it now

WMSO-definable languages = regular languages

Büchi

FO[<]-definable languages

= star-free languages

McNaughton and Papert

(aa)*

Ehrenfeucht-Fräıssé

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 56 / 145

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 57 / 145

4. Presburger Arithmetic

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 57 / 145

Presburger Arithmetic

Goal
State properties of sets of natural numbers

Use restricted language of first-order arithmetic: addition, no multiplication,
quantification

Compute solution space (free variables)

Compute truth value (closed formulas)

Two approaches

Automata theoretic: Represent solution space via automaton

Logical: Establish quantifier elimination result

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 58 / 145

Presburger Arithmetic: Syntax

Signature Sig = (Fun,Pred) with Fun = {0/0, 1/0,+/2} and Pred = {< /2}
Infinite set of first-order variables V

Definition (Syntax of Presburger arithmetic)

Terms built from variables and function symbols:

t ::= 0 p 1 p x p t1 + t2 with x ∈ V .

Formulas in Presburger arithmetic defined by

𝜙 ::= t1 < t2 p ¬𝜙 p 𝜙1 ∧ 𝜙2 p ∃x : 𝜙.

Set of all formulas denoted by PA.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 59 / 145

Presburger Arithmetic: Syntax

Definition (Abbreviations)

Abbreviations: Consider terms t1, t2, n ∈ N, and x ∈ V . We set

t1 > t2 := t2 < t1 t1 ≤ t2 := ¬(t1 > t2)

t1 ≥ t2 := t2 ≤ t1 t1 = t2 := t1 ≤ t2 ∧ t1 ≥ t2

n := 1 + . . . + 1⏟ ⏞
n-times

nx := x + . . . + x⏟ ⏞
n-times

Abbreviations for formulas: as before.

Definition (Bound and free variables)

Like for WMSO. Sentences have no free variables.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 60 / 145

Presburger Arithmetic: Semantics
Fixed structure (N, 0N, 1N,+N, <N)

Definition (Satisfaction relation |= for PA)

Consider formula 𝜙 ∈ PA. An interpretation I : V 9 N assigns a natural number
to each free variable in 𝜙 (and maybe to others, not important). With this:

I |= t1 < t2 if I (t1) <
N I (t2)

I |= ¬𝜙 if I ̸|= 𝜙

I |= 𝜙1 ∨ 𝜙2 if I |= 𝜙1 or I |= 𝜙2

I |= ∃x : 𝜙 if there is n ∈ N so that I [n/x] |= 𝜙.

Interpretation of terms (note that I (x) ∈ N):

I (0) := 0N I (1) := 1N I (t1 + t1) := I (t1) +N I (t2).

Definition (Equivalence)

Formulas 𝜙,𝜓 ∈ PA are equivalent, 𝜙 ≡ 𝜓, if for all I : V 9 N we have

I |= 𝜙 iff I |= 𝜓.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 61 / 145

Presburger Arithmetic: Semantics

Definition (Truth, solutions, definability)

Consider closed formula 𝜙 ∈ PA.

Say 𝜙 is true if satisfied by all interpretations.

Otherwise 𝜙 satisfied by no interpretation and call it false.

Consider formula 𝜓 ∈ PA with n ∈ N free variables x .

Restrict ourselves to interpretations I : V 9 N with dom(I) = x .

Assume variables are ordered, write I as vector v ∈ Nn.

Call v ∈ Nn with v |= 𝜓 a model or solution of 𝜓.

Formula 𝜓 is satisfiable if there is v ∈ Nn with v |= 𝜓.

If all v ∈ Nn satisfy 𝜓, call 𝜓 valid.

Solution space of 𝜓 is

Sol(𝜓) := {v ∈ Nn | v |= 𝜓}.

A set S ⊆ Nk is Presburger-definable if there is 𝜓 ∈ PA with S = Sol(𝜓).

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 62 / 145

Representing Solution Spaces

Goal

Represent Sol(𝜓) by a DFA A𝜓.

Problem

A𝜓 accepts words whereas Sol(𝜓) contains numbers.

Definition (Least-significant bit first encoding, language of a formula)

Relation lsbf ⊆ N× {0, 1}* encodes k ∈ N by the set lsbf (k) := binary(k) · 0*.
Binary notation has least-significant bit first. Extend relation to vectors:

lsbf ⊆ Nn × ({0, 1}n)* with n ∈ N.

The language of 𝜓 ∈ PA is

L(𝜓) :=
⋃︁

v∈Sol(𝜓)

lsbf (v).

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 63 / 145

Representing Solution Spaces

Theorem (Büchi 1960, Wolper & Boigelot 2000, Esparza 2012)

Let 𝜓 ∈ PA. We can effectively construct a DFA A𝜓 with L(A𝜓) = L(𝜓).

Corollary

It is decidable, whether 𝜓 is satisfiable/valid.

Approach

A¬𝜓 := A𝜓 A𝜙∨𝜓 := A𝜙 ∪ A𝜓 A∃x :𝜓 := 𝜋x(A𝜓)

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 64 / 145

Representing Solution Spaces

Remains to construct automaton for solutions of atomic formulas.

Notation
Atomic formulas can be assumed to be in form

𝜓 = a1x1 + . . . + anxn ≤ b

with a1, . . . , an, b ∈ Z. With a ∈ Zn and x ∈ V n vectors, write as

a · x ≤ b.

For the construction, please see handwritten notes.

Lemma (Termination)

Let 𝜓 = a · x ≤ b and s =
∑︀n

i=1 |ai |. The states j ∈ Z added to the worklist satisfy

−|b| − s ≤ j ≤ |b| + s.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 65 / 145

Quantifier Elimination

Goal
Decide truth of a sentence 𝜙 ∈ PA.

Approach (Replace quantifiers by concrete values)

A logic admits quantifier elimination if for any formula of the form

∀/∃x1 . . . ∀/∃xn : 𝜙(x1, . . . , xn, y1, . . . , ym)

there is an equivalent formula 𝜓(y1, . . . , ym).

Definition (Modulo m)

Extend signature of Presburger arithmetic by ≡m for all m ≥ 2.

Remark

Note that PA[<] and PA[<, (≡m)m≥2] equally expressive:

x ≡m y iff ∃z : (x ≤ y ∧ y − x = mz) ∨ (x > y ∧ x − y = mz).

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 66 / 145

Quantifier Elimination

Theorem (Presburger 1929)

Consider ∃x : 𝜙(x , y1, . . . , ym) ∈ PA[<, (≡m)m≥2]. We can effectively construct
𝜓(y1, . . . , ym) ∈ PA[<, (≡m)m≥2] with

∃x : 𝜙(x , y1, . . . , ym) ≡
logical equivalence

𝜓(y1, . . . , ym).

Proof.
Please see handwritten notes.

Corollary

Given a sentence 𝜙 ∈ PA, we can decide whether it is true or false.

Phrased differently, the theory of structure (N, 0N, 1N, <N,+N) is decidable.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 67 / 145

Part B Infinite Words

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 68 / 145

Where are we?

Learned so far...

REG/Finite automata, WMSO/FO formulas, Presburger
arithmetic/Semilinear sets/Parikh images.

Now following model checking problem makes sense:

A |= 𝜙 defined by L(A) ⊆ L(𝜙).

A usually called system, 𝜙 usually called specification,
check whether A is model of 𝜙 (in the sense of |=).

Systems features: regular or regular + counting.

Sometimes, finite words are not sufficient...
Operating systems typically not meant to terminate: �♦req

New class of automata: Büchi automata — system.

New logic: Linear-time Temporal Logic (LTL) — specification.

New system features: Büchi pushdown automata – recursion.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 69 / 145

5. 𝜔-Regular Languages and Büchi Automata

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 70 / 145

Goals and Problems

Goal
Recognize infinite words with finite automata

What is an accepting run? Final states fail!

Büchi condition: visit final states infinitely often.

Solve algorithmic problems

Emptiness: Does the automaton accept a word?

Language equivalence: Do automata A and B accept the same language?

Key challenges

Determinisation/complementation.

Applications

Model checking MSO — second-order variables range over infinite sets.

Model checking LTL as syntactic fragment of MSO.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 71 / 145

Basic Notions

Let Σ be a finite alphabet.

Definition
𝜔-word over Σ = infinite sequence w = a0 · a1 . . . with ai ∈ Σ for all i ∈ N.

Set of all infinite words over Σ is Σ𝜔.

𝜔-language L ⊆ Σ𝜔 = set of 𝜔-words.

Let w ∈ Σ𝜔 and a ∈ Σ. Then |w |a ∈ N ∪ {𝜔} = number of a in w .

Concatenation

Impossible to concatenate v ,w ∈ Σ𝜔

If v ∈ Σ* and w ∈ Σ𝜔, then v · w ∈ Σ𝜔.

Let V ⊆ Σ* and W ⊆ Σ𝜔, then V ·W := {v · w | v ∈ V ,w ∈ W } ⊆ Σ𝜔.

Let v ∈ Σ+. Then v𝜔 := v · v · v · . . .
Let L ⊆ Σ* with L ∩ Σ+ ̸= ∅. Then

L𝜔 := {v0 · v1 · v2 · . . . | vi ∈ L ∖ {𝜀} for all i ∈ N}.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 72 / 145

Basic Notions

Example

Set of all words with

infinitely many b

so that two b are separated by even number of a:

a* · ((aa)* · b)𝜔.

Next step

Define 𝜔-regular languages

Choose 𝜔-iteration of regular languages.

“Correct definition” as follows: has natural corresponding automaton model.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 73 / 145

𝜔-Regular Languages

Definition (𝜔-regular languages)

A language L ⊆ Σ𝜔 is 𝜔-regular if there are regular languages V0, . . . ,Vn−1 ⊆ Σ*,
W0, . . . ,Wn−1 ⊆ Σ* with Wi ∩ Σ+ ̸= ∅ for all i ∈ [0, n − 1] so that

L =
n−1⋃︁
i=0

Vi ·W 𝜔
i .

Example

Please see handwritten notes.

Lemma
𝜔-regular languages are closed under

union

concatenation from left with regular languages.

For remaining closure properties: automata helpful.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 74 / 145

Büchi Automata
Syntactically finite automata
Acceptance condition changed

Definition (Büchi automaton (syntax and semantics))

A non-deterministic Büchi automaton (NBA) is a tuple
A = (Σ,Q, q0,→,QF) with the usual states Q, initial state q0 ∈ Q, final
states QF ⊆ Q, transition relation → ⊆ Q × Σ × Q.

Run of A is an infinite sequence

r = q0
a0−→ q1

a1−→ q2
a2−→ . . .

If w = a0 · a1 · a2 · . . ., we have a run of A on w .

Write q0
w−→ to indicate there is a run of A on w . (States not important.)

Let Inf (r) := states that occur infinitely often in r .

Run r is accepting if Inf (r) ∩ QF ̸= ∅.

𝜔-language of A is

L(A) := {w ∈ Σ𝜔 | there is an accepting run of A on w}.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 75 / 145

Büchi Automata

Comment

Acceptance = one final state visited infinitely often

= set of final states visited infinitely often (⇐ as QF finite set).

Example

The automata can be found in the handwritten notes. Let Σ = {a, b}.

L1 := (a* · b)𝜔 Infinitely many b.

L2 := (a ∪ b)* · a𝜔 Finitely many b.

Note that L2 = L1 = Σ𝜔 ∖ L1.
Automaton A2 for L2 is non-deterministic while A1 for L1 is deterministic.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 76 / 145

Deterministic Büchi Automata

Definition (Deterministic Büchi automaton)

An NBA A = (Σ,Q, q0,→,QF) is deterministic (DBA) if for all a ∈ Σ and all

q ∈ Q there is precisely one state q′ ∈ Q with q
a−→ q′.

Not by accident that A2 is NBA while A1 is DBA.

L2 can not be recognized by a DBA.
In sharp contrast to NFA = DFA-recognizable languages.

Theorem
There are 𝜔-languages that are NBA-recognizable but not DBA-recognizable.

Consequence

There are NBAs that cannot be determinized into DBAs.

Since L2 = (a ∪ b)* · a𝜔, one may assume that

𝜔-regular languages⏟ ⏞
expressions/closure

= NBA-recognizable languages⏟ ⏞
automata

This in fact holds.
Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 77 / 145

6. Linear-time Temporal Logic

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 78 / 145

Linear-time Temporal Logic

Specification language for model checking:

in a model checking problem A |= 𝜙, formula 𝜙 is typically in LTL

Used in industry as PSL = property specification language (variant of LTL,
like statemachines in UML are derived from finite automata)

Proposed by Amir Pnueli in 1977, Turing award 1996

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 79 / 145

Linear-time Temporal Logic

Idea of LTL
Subset of MSO useful for specification

No quantifiers, more complex and intuitive operators

Understand word as a sequence of (sets of) system actions over time

Interpret formula at a single moment/point in the word

𝛼 a 𝛽

a is now, 𝛽 is the future, operators only make claims about the future

Remark
LTL is a linear-time temporal logic that talks about words

CTL is a branching-time temporal logic that talks about computation trees

E○ (x ∧ A○ z).

CTL* unifies and generalizes LTL and CTL

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 80 / 145

Linear-time Temporal Logic

Goal
Translate LTL into NBA for model checking

LTL can be understood as a subset of MSO

Therefore, we know this translation can be done

But it is strictly less expressive than MSO

Therefore, we obtain a faster and easier algorithm

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 81 / 145

LTL: Syntax

Recall

For translation of WMSO formulas 𝜙(X1, . . . ,Xn)

Used NFAs over {0, 1}n, vectors of Booleans

In LTL

There is a finite set of propositions 𝒫 (with typical elements p, q, . . . ∈ 𝒫)

Mimic second-order variables Xi

Finite in every system

Define alphabet Σ := P(𝒫)

Letters are again vectors:

a ∈ Σ means a ⊆ 𝒫 with a =

⎛⎜⎜⎜⎝
1
0
...
1

⎞⎟⎟⎟⎠
p1 ∈ a
p2 /∈ a
...

pn ∈ aWe use set notation: p ∈ a

Why this alphabet? Systems do multiple action at a time/components are in one
state each

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 82 / 145

LTL: Syntax

Definition (Syntax of LTL)

Formulas in LTL over Σ := P(𝒫) are defined by

𝜙 ::= p p 𝜙 ∨ 𝜓 p ¬𝜙 p ○𝜙⏟ ⏞
next

p 𝜙 𝒰 𝜓⏟ ⏞
until

where p ∈ 𝒫

Definition (Abbreviations)

Use standard abbreviations for Boolean operators. Moreover:

♦𝜙⏟ ⏞
eventually

:= true 𝒰 𝜙 �𝜙⏟ ⏞
always

:= ¬♦¬𝜙 𝜙 ℛ 𝜓⏟ ⏞
release

:= ¬(¬𝜙 𝒰 ¬𝜓)

Definition (Size)

The size of an LTL formula is defined inductively by

|p| := 1 |¬𝜙| := 1 + |𝜙| | ○ 𝜙| := 1 + |𝜙|
|𝜙 * 𝜓| := |𝜙| + 1 + |𝜓| with * ∈ {∨,∧,𝒰 ,ℛ}
Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 83 / 145

LTL: Semantics

Intuitive meaning

p = proposition p holds at the current position

○𝜙 = the next position satisfies 𝜙

𝜙 𝒰 𝜓 = 𝜙 holds in all positions until 𝜓 holds
𝜓 definitely holds some time later (or already now)

♦𝜙 = there is some future moment in which 𝜙 holds

�𝜙 = from now on, 𝜙 holds in all moments in the future

𝜙 ℛ 𝜓 = 𝜓 holds as long as it is not released by 𝜙 (dual of until)
𝜓 may hold forever or
there is a moment with 𝜓 and 𝜙

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 84 / 145

LTL: Semantics

Definition (Satisfaction relation |= for LTL)

Let w = a0 · a1 · a2 . . . ∈ Σ𝜔 = P(𝒫)𝜔. The satisfaction relation |= is defined
inductively as follows (for all i ∈ N):

w , i |= p if p ∈ ai

w , i |= 𝜙 ∨ 𝜓 if w , i |= 𝜙 or w , i |= 𝜓

w , i |= ¬𝜙 if w , i ̸|= 𝜙

w , i |= ○𝜙 if w , i + 1 |= 𝜙

w , i |= 𝜙 𝒰 𝜓 if there is k ≥ i so that

for all i ≤ j < k we have w , j |= 𝜙

and w , k |= 𝜓.

An LTL formula 𝜙 defines a language L(𝜙) ⊆ Σ𝜔 by interpreting it in the first
position of a word:

L(𝜙) := {w ∈ Σ𝜔 | w , 0 |= 𝜙}.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 85 / 145

LTL: Semantics

Example

Infinitely often 𝜙: �♦𝜙

Finitely often 𝜙: ♦�¬𝜙
Every request is followed by an acknowledge: �(req → ♦ack)

If there are infinitely many positions with p, then there are infinitely many
positions with q:

�♦p → �♦q or equivalently �♦q ∨ ♦�¬p.

Definition (Equivalence)

Two LTL formulas 𝜙,𝜓 are called equivalent, denoted by 𝜙 ≡ 𝜓, if for all w ∈ Σ𝜔

and all i ∈ N we have

w , i |= 𝜙 iff w , i |= 𝜓.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 86 / 145

Language-theoretic Considerations

Every letter a ∈ Σ = P(𝒫) can be described by its characteristic formula

𝜒a :=
⋀︁

p ∈ a

p ∧
⋀︁

p /∈ a

¬p.

With this, capture languages over Σ by LTL formulas

Example

Language (a · b)𝜔 defined by

𝜒a ∧�((𝜒a → ○𝜒b) ∧ (𝜒b → ○𝜒a))

Language (a · (a ∪ b))𝜔⏟ ⏞
even positions have an a

not LTL-definable

LTL-definable languages are definable in FO on infinite words

Words of even length are not definable in FO on finite words

Similar argument applies here

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 87 / 145

Positive Normal Form and Properties of Until

Definition (Positive normal form)

An LTL formula over Σ = P(𝒫) is in positive normal form if it is constructed from

p,¬p with p ∈ 𝒫 and ∨,∧,○,𝒰 ,ℛ.

Lemma

For every formula 𝜙 there is 𝜓 in positive normal form with 𝜙 ≡ 𝜓 and |𝜓| ≤ 2|𝜙|.

Proof.
Use the following equivalences:

¬○ 𝜙 ≡ ○¬𝜙
¬(𝜙 𝒰𝜓) ≡ ¬(¬(¬𝜙) 𝒰¬(¬𝜓)) ≡ ¬𝜙 ℛ ¬𝜓
¬(𝜙 ℛ 𝜓) ≡ ¬¬(¬𝜙 𝒰 ¬𝜓) ≡ ¬𝜙 𝒰 ¬𝜓

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 88 / 145

Positive Normal Form and Properties of Until
For translation of LTL into Büchi automata, use unrolling of until

Lemma (Inductive property of until)

For all 𝜙,𝜓 ∈ LTL we have 𝜙 𝒰 𝜓 ≡ 𝜓 ∨ (𝜙 ∧○(𝜙 𝒰 𝜓)).

Logical equivalence ≡ in LTL in fact a congruence

Lemma

If 𝜙 ≡ 𝜓 and 𝜙 is part of a larger formula 𝜃(𝜙), then 𝜃(𝜙) ≡ 𝜃(𝜓).

As a consequence

𝜙 𝒰 𝜓 ≡ 𝜓 ∨ (𝜙 ∧○(𝜙 𝒰 𝜓))

≡ 𝜓 ∨ (𝜙 ∧○(𝜓 ∨ (𝜙 ∧○(𝜙 𝒰 𝜓))))

≡ . . .

Gives a means to check 𝜙 𝒰 𝜓 at position i :

either 𝜓 holds or 𝜙 holds and 𝜙 𝒰 𝜓 holds in the next position i + 1

Have to ensure 𝜓 eventually holds (unrolling happens finitely many times)

Final states forbid infinite unrollings
Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 89 / 145

From LTL to NBA

Goal
Translate LTL into NBA

without using intermediary FO representation

and then Büchi’s result

Why is LTL easier than MSO?

Like the automaton, LTL only looks into the future

Construction does not follow the inductive structure of formulas (safes
complementation at each negation)

Instead, keep track of satisfaction of all subformulas while reading input

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 90 / 145

Generalized Büchi Automata

Definition (Generalized NBA)

A generalized non-deterministic Büchi automaton (GNBA) is a tuple
A = (Σ,Q,QI ,→, (Q i

F)1≤i≤k) with

set of initial states QI ⊆ Q (instead of q0 ∈ Q)

family of final states (Q i
F)1≤i≤k with Q i

F ⊆ Q for all 1 ≤ i ≤ k

A run is still

r = q0
a0−→ q1

a1−→ . . . with q0 ∈ QI

A run is accepting if Inf (r) ∩ Q i
F ̸= ∅ for all 1 ≤ i ≤ k

Every set of final states is visited infinitely often

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 91 / 145

Generalized Büchi Automata
“Generalization” does not increase expressiveness of the automaton model

Lemma

For every GNBA A there is an NBA A′ with L(A) = L(A′) and |Q ′| ≤ k|Q| + 1.

Idea
Use counters from intersection construction:

L(A) =
⋂︁

1≤i≤k

L(Ai) with Ai = (Σ,QI ,→,Q i
F).

Direct construction
Several initial states into one pic new state

Several sets of final states to one:
I Use counters in new states: Q ′ := Q × {1, . . . , k}
I (q, i) means: next final state is expected from Q i

F

I New final states: Q i
F × {i} for some 1 ≤ i ≤ k (any i will do)

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 92 / 145

Fisher-Ladner Closure and Hintikka Sets

Idea of the translation
States in the automaton are subformulas of 𝜃 ∈ LTL

Intuitively, we take the formulas that currently hold

Definition (Fisher-Ladner Closure)

Let 𝜃 ∈ LTL be a formula in positive normal form. Its Fisher-Ladner closure
FL(𝜃) ⊆ LTL is the smallest set of LTL formulas in positive normal form so that

1 𝜃 ∈ FL(𝜃) and

2.a if 𝜙 * 𝜓 ∈ FL(𝜃) then {𝜙,𝜓} ⊆ FL(𝜃) for * ∈ {∧,∨}

2.b if 𝜙 𝒰 𝜓 ∈ FL(𝜃) then 𝜓 ∨ (𝜙 ∧○(𝜙 𝒰 𝜓)) ∈ FL(𝜃)

2.c if 𝜙 ℛ 𝜓 ∈ FL(𝜃) then 𝜓 ∧ (𝜙 ∨○(𝜙 ℛ 𝜓)) ∈ FL(𝜃)

2.d if ○𝜙 ∈ FL(𝜃) then 𝜙 ∈ FL(𝜃)

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 93 / 145

Fisher-Ladner Closure and Hintikka Sets

Fisher-Ladner closure defined purely syntactically

Hintikka sets are sets of subformulas M ⊆ FL(𝜃) that are closed under
satisfaction of subformulas (what else has to hold)

if 𝜙 ∨ 𝜓 ∈ M then 𝜙 ∈ M or 𝜓 ∈ M

Single out those sets that do not contain contradictions p and ¬p

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 94 / 145

Fisher-Ladner Closure and Hintikka Sets

Definition (Hintikka set)

Let 𝜃 ∈ LTL be a formula in positive normal form. A Hintikka set for 𝜃 is a subset
M ⊆ FL(𝜃) that satisfies the following closure properties:

𝜙 ∨ 𝜓 ∈ M implies 𝜙 ∈ M or 𝜓 ∈ M

𝜙 ∧ 𝜓 ∈ M implies 𝜙 ∈ M and 𝜓 ∈ M

𝜙 𝒰 𝜓 ∈ M implies 𝜓 ∈ M or (𝜙 ∈ M and ○ (𝜙 𝒰 𝜓) ∈ M)

𝜙 ℛ 𝜓 ∈ M implies 𝜓 ∈ M and (𝜙 ∈ M or ○ (𝜙 ℛ 𝜓) ∈ M)

A Hintikka set M ⊆ FL(𝜃) is consistent if there is no p ∈ 𝒫 with {p,¬p} ⊆ M.
By ℋ(𝜃) we denote the set of all consistent Hintikka sets for 𝜃.

The set of propositions that occur positively/negatively in M ⊆ FL(𝜃) is

𝒫+(M) := M ∩ 𝒫 𝒫−(M) := {p ∈ 𝒫 | ¬p ∈ M}

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 95 / 145

Vardi-Wolper Construction

Construct an automaton 𝒜𝜃 that accepts precisely the models of 𝜃

States = consistent Hintikka sets

What are the subformulas that hold at this position in the model

Guess them in every step

Need consistency
I Within Hintikka sets: automaton does not guess inconsistencies
I With ○: if ○𝜙 is guessed then 𝜙 has to hold at the next position

Final states

Construction relies on unrolling of 𝒰 and ℛ
I This is already part of FL(𝜃) and Hintikka sets

Until 𝒰 yields accepting states
I Forbids infinite unrollings (have a set of final states for each 𝜙 𝒰 𝜓 ∈ FL(𝜃))

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 96 / 145

Vardi-Wolper Construction

Definition (Vardi-Wolper automaton)

Consider an LTL formula 𝜃 in positive normal form. Let 𝜙1 𝒰 𝜓1, . . . , 𝜙k 𝒰 𝜓k be
all 𝒰-formulas in FL(𝜃). The Vardi-Wolper automaton is

𝒜𝜃 := (ℋ(𝜃),QI ,→, (Q i
F)1≤i≤k)

with

QI := {M ∈ ℋ(𝜃) | 𝜃 ∈ M}
//Sets that contain 𝜃

Q i
F := {M ∈ ℋ(𝜃) | 𝜙i 𝒰 𝜓i /∈ M or 𝜓i ∈ M}

//If the ith until formula needs to be fulfilled then this happens in M

M
a−→ M ′ if {𝜓 ∈ FL(𝜃) | ○𝜓 ∈ M} ⊆ M ′

and 𝒫+(M) ⊆ a and 𝒫−(M) ∩ a = ∅

If FL(𝜃) does not contain until formulas, select QF = Q as final states.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 97 / 145

Vardi-Wolper Construction

Guess Hintikka set M0 that contains 𝜃

This selects subformulas that also hold at position 0

If the automaton arrives at M, then M contains (potentially negated) propositions
p, ¬p, and formulas ○𝜓

These formulas do not have further decompositions

Make claims about what has to hold at this position (○𝜓 makes claims
about next position)

If the automaton takes a transition

it only uses a letter that is consistent with the current propositions: all
positive propositions occur, none of the negative propositions is used

it reaches a state that is consistent with the guesses of ○ in the previous set
(if ○𝜓 ∈ M then 𝜓 ∈ M ′)

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 98 / 145

Vardi-Wolper Construction

Theorem (Vardi, Wolper 1986)

Consider 𝜃 ∈ LTL. The automaton 𝒜𝜃 satisfies L(𝜃) = L(𝒜𝜃) and |𝒜𝜃| ≤ 28|𝜃|.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 99 / 145

7. Model Checking Pushdown Systems
(Recursive Programs)

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 100 / 145

Model Checking Pushdown Systems

Goal

Decide P |= 𝜙 for P a pushdown system

Technically: Reachability of accepting loops

Key element in the algorithm

Given a set of configurations C , compute the set of all predecessors:

pre*(C) :=
⋃︁
i∈N

Xi with X0 := C Xi+1 := Xi ∪ pre(Xi) for all i ∈ N.

Here, pre(C) = immediate predecessors of C .

Problem

For finite state systems, sequence (Xi)i∈N reaches a fixed point.

For infinite state systems like PDS, sequence (Xi)i∈N usually does not converge.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 101 / 145

Model Checking Pushdown Systems

Solution: Representation structures

Finite structures that represent infinite sets of configurations.

Should have good properties — a wish list:

Closed under ∪, or even all Boolean operations

Closed under pre

Decidable membership problem (c ∈ R for c configuration, R representation)

Note that ∪ and pre are needed for Xi+1 := Xi ∪ pre(Xi).

Example

Timed automata → sets of configurations represented by regions.

Well-structured transition systems → sets of configurations represented by
minimal elements.

Lossy channel systems → sets of configurations represented by simple regular
expressions.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 102 / 145

Model Checking Pushdown Systems

Here: configurations are pairs (q,w) of state q and stack content w .

Representation structure: P-NFA

P-NFA A accepts configuration (q,w) of pushdown system P if A accepts w from
the initial state sq.

Warning

A represents the set of configurations of P.
A does not represent the behaviour/transitions of P.

Contribution
NFAs are closed under Boolean operations

Membership is decidable

⇒ Algorithm to compute pre*(C)

⇒ Exploit it for model checking PDS against LTL

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 103 / 145

Pushdown Systems: Syntax

Idea

Pushdown systems are pushdown automata (Kellerautomaten).

But do not consider them as language acceptors.

Interested in their configurations and configuration changes.

Definition (Syntax of Pushdown Systems)

A pushdown system (PDS) is a triple P = (Q, Γ,→) with

set of states Q

stack alphabet Γ

set of transitions → ⊆ (Q × Γ) × (Q × Γ*)

Usually write q
𝛾/w−−→ q′ instead of ((q, 𝛾), (q′,w)) ∈ →.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 104 / 145

Pushdown Systems: Semantics

Definition (Semantics of Pushdown Systems)

Let P = (Q, Γ,→) be a PDS. Its behaviour is defined in terms of

configurations (q,w) with state q ∈ Q and stack content w ∈ Γ*.

Denote the set of all configurations by CF := Q × Γ*.

The PDS induces the following transitions relation → ⊆ CF× CF between
configurations:

(q1, 𝛾 · w ′) → (q2,w · w ′) if q1
𝛾/w−−→ q2 in P.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 105 / 145

Pushdown Systems: Semantics

The predecessor function abstracts from transitions and talks about sets of
configurations.

Definition (Predecessors)

Let C ⊆ CF be a set of configurations in a PDS. The set of immediate
predecessors of C is

pre(C) := {c ′ ∈ CF | c ′ → c with c ∈ C}.

The set of all predecessors of C (all configurations from which C is reachable) is

pre*(C) := {c ′ ∈ CF | c ′ →* c with c ∈ C}.

Here, →* is the reflexive and transitive closure of →. We also use

pre+(C) := pre(pre*(C)).

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 106 / 145

Representation Structure: P-NFA

How to represent a set of configurations?

Definition (P-NFA)

Let P = (Q, Γ,→) be a PDS. A P-NFA is an NFA A = (Γ,S ,SI ,→,SF) where

SI := {sq | q ∈ Q}.

A accepts configuration (q,w) if sq
w−→ sF with sF ∈ SF .

The set of all configurations accepted by A is CF(A).

A set of configurations C ⊆ CF is regular if C = CF(A) for some P-NFA A.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 107 / 145

Computing pre*(C)

Goal:

Given: Pushdown system P = (Q, Γ,→) and a regular set of configurations
C = CF(A) for some P-NFA A.
Compute: Another P-NFA Apre* that represents pre*(CF(A)).

Approach

Compute pre*(C) =
⋃︀

i∈N Xi with

X0 := C and Xi+1 := Xi ∪ pre(Xi) for all i ∈ N.

So we intend to construct the sequence

X0 ⊆ X1 ⊆ X2 ⊆ . . . until Xi+1 = Xi for some i ∈ N.

Then pre*(C) = Xi .

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 108 / 145

Computing pre*(C)

Problem
Existence of such a fixed point is not guaranteed. As an example, consider

P = ({q}, {𝛾}, {q 𝛾/𝜀−−→ q}). Then for C = {(q, 𝜀)} we have

Xi = {(q, 𝜀), . . . , (q, 𝛾 i)} for all i ∈ N.

Hence, Xi+1 ̸= Xi for all i ∈ N.

Solution

Compute pre*(C) as the limit of a different sequence of sets of configurations:

Y0 ⊆ Y1 ⊆ Y2 ⊆ . . .

This sequence will satisfy three conditions:

(Term) There is i ∈ N so that Yi = Yi+1.

(Compl) Xi ⊆ Yi for all i ∈ N.

(Sound) Yi ⊆
⋃︀

j∈N Xj for all i ∈ N.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 109 / 145

Computing pre*(C)

Construction
Yi = set of configurations accepted by a P-NFA Ai :

Y0 = CF(A0) ⊆ Y1 = CF(A1) ⊆ Y2 = CF(A2) ⊆ . . .

From Ai to Ai+1: only add transitions, never change the states.

This already shows (Term), at most |S |2|Γ| transitions can be added.

Definition (Sequence (Ai)i∈N and Apre*)

Let P = (Q, Γ,→) be a PDS and A = (Γ,S ,SI ,→A,SF) be a P-NFA.

We define A0 := A. Morever, let Ai = (Γ,S ,SI ,→i ,SF). Then we set

Ai+1 := (Γ,S ,SI ,→i ∪ →new,SF) where

sq1
𝛾−→new s if sq2

w−→i s and q1
𝛾/w−−→ q2 in P.

Define Apre* := Ai with Ai = Ai+1.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 110 / 145

Computing pre*(C)

Intuition and Remark

1. Configuration (q1, 𝛾 · w ′) is an immediate predecessor of (q2,w · w ′) wrt.

transition q1
𝛾/w−−→ q2. So if w · w ′ is accepted from sq2 ,

sq2
w−→i s

w ′

−→i sF ∈ SF ,

then the new transition accepts 𝛾 · w ′ from sq1 :

sq1
𝛾−→new s

w ′

−→i sF ∈ SF .

2. There are two strategies for adding transitions:

lazy Only add a transition if it leads to a final state.

eager Always add a transition, as defined.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 111 / 145

Computing pre*(C)

Theorem (Bouajjani, Esparza, Maler ’97)

Consider a PDS P and a set of configurations accepted by a P-NFA A. We can
construct (in polynomial time) a P-NFA Apre* so that

CF(Apre*) = pre*(CF(A)).

Warning

For the predecessor computation to be correct, we have to assume that A has no
edges leading to an initial state. This can always be achieved by preprocessing A.

Proof.

Assume we already proved (Compl) and (Sound) for sequence (Yi)i∈N. Then

⊇ pre*(CF(A)) =
⋃︁
i∈N

Xi

(Compl)

⊆
⋃︁
i∈N

Yi = Yk for Ak = Ak+1 = Apre*

⊆ CF(Apre*) = Yk ⊆
(Sound)

⋃︁
i∈N

Xi = pre*(CF(A)) for some k ∈ N.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 112 / 145

Computing pre*(C)

Lemma (Completeness)

Xi ⊆ Yi for all i ∈ N.

The soundness proof needs a technical lemma, which relies on the warning from
the previous slide.

Lemma

If sq
w−→i s then (q,w) →* (q′, v) for some q′ ∈ Q, v ∈ Γ* so that sq′

v−→0 s.

Intuition

If (q,w) is accepted in the ith iteration, then it leads to a configuration (q′, v)
that is accepted initially.

Lemma (Soundness)

Yi ⊆ pre*(C) for all i ∈ N.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 113 / 145

Model Checking LTL

To define P |= 𝜙 with P = (Q, Γ,→) and 𝜙 ∈ LTL, assign propositions to states:

𝜆 : Q → P(𝒫) with 𝒫 a finite set of propositions.

Goal: (Global) model checking

Global model checking: Compute the set C ⊆ CF of all configurations c ∈ C
so that every run starting from c satisfies 𝜙.

Classical model checking: Does every run starting from cinit satisfy 𝜙?

Model checking can be solved with global model checking: is cinit ∈ C?

From global model checking to accepting runs

To solve global model checking, construct the Büchi pushdown system P × A¬𝜙.

Look for an accepting run in P × A¬𝜙.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 114 / 145

Model Checking LTL

Definition (Büchi Pushdown System)

A Büchi pushdown system (BPDS) is a tuple BP = (Q, Γ,→,QF) with

(Q, Γ,→) a PDS and

QF ⊆ Q a set of final states.

The semantics is defined in terms of infinite runs

r = (q0,w0) → (q1,w1) → . . .

A run is accepting if qi ∈ QF for infinitely many configurations (qi ,wi).

Accepting run problem

Given a BPDS BP, compute the set C ⊆ CF of all configurations c ∈ C so that
BP has an accepting run from c .

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 115 / 145

Model Checking LTL

Following proposition relates the accepting run problem to reachability in PDS.

Proposition

BP has an accepting run from c ∈ CF if and only if
there are configurations (q, 𝛾), (qF , u), (q, 𝛾 · v) ∈ CF with qF ∈ QF so that

(1) c →* (q, 𝛾 · w) for some w ∈ Γ* and

(2) (q, 𝛾) →+ (qF , u) →* (q, 𝛾 · v).

To check existence of an accepting run, reformulate conditions:

(1’) c ∈ pre*({q} × 𝛾 · Γ*)

(2’) (q, 𝛾) ∈ pre+((QF × Γ*) ∩ pre*({q} × 𝛾 · Γ*)).

Note the beauty!

Statement about emptiness (set-theoretic) turned into an algorithmic problem via
combinatorial reasoning.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 116 / 145

Model Checking LTL

Theorem (Bouajjani, Esparza, Maler ’97)

The accepting run problem of BPDS can be solved in polynomial time.

Algorithm

Find all configurations (q, 𝛾) for which (2’) holds (at most |Q||Γ| many):
I Construct BP-NFA for pre*({q} × 𝛾 · Γ*).
I Intersect with QF × Γ*: keep stack contents from sqF with qF ∈ QF .
I Compute pre*((QF × Γ*) ∩ pre*({q} × 𝛾 · Γ*))
I Compute another single pre:

pre(pre*((QF × Γ*) ∩ pre*({q} × 𝛾 · Γ*))) =

pre+((QF × Γ*) ∩ pre*({q} × 𝛾 · Γ*)).

I Check (q, 𝛾) ∈ pre+((QF × Γ*) ∩ pre*({q} × 𝛾 · Γ*)).

For all (q, 𝛾) that satisfy (2’), compute pre*({q} × 𝛾 · Γ*).

Take the union of all these sets pre*({q} × 𝛾 · Γ*).

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 117 / 145

8. More on Infinite Words

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 118 / 145

More on Infinite Words: MSO
Syntax of WSMO.

But interpreted over infinite words. In particular, second-order quantifiers
may range over infinite sets:

∃X : (∃x : first(x) ∧ X (x)) ∧ (∀x : X (x) → ∃y : x < y ∧ X (y))

is satisfiable in MSO.

Main Result
Satisfiability is decidable in MSO.

Proof.
Construct NBA A𝜙 so that

L(A𝜙) = {w ∈ Σ𝜔 | S(w) |= 𝜙} = L(𝜙).

Reuse techniques for WMSO.

Check emptiness for L(A𝜙).

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 119 / 145

More on Infinite Words: Rabin, Streett, and Muller

Büchi automata

Infinite run r = q0
a0−→ q1

a1−→ q2
a2−→ . . . satisfies Inf (r) ∩ QF ̸= ∅.

Rabin automata

Final states are pairs ℱ = {(G1,F1), . . . , (Gn,Fn)} with G1, . . . ,Fn ⊆ Q.

Run is accepting if

Inf (r) ∩ Gi ̸= ∅⏟ ⏞
States that should occur in the infinite

and Inf (r) ∩ Fi = ∅⏟ ⏞
States forbidden in the infinite

for some 1 ≤ i ≤ n.

Streett automata

Dual of Rabin acceptance. Final states again ℱ = {(G1,F1), . . . , (Gn,Fn)}.

Run is accepting if

Inf (r) ∩ Gi ̸= ∅ implies Inf (r) ∩ Fi ̸= ∅ for all 1 ≤ i ≤ n.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 120 / 145

More on Infinite Words: Rabin, Streett, and Muller

Muller automata

Final states are sets ℱ = {Q1, . . . ,Qn} with Q1, . . . ,Qn ⊆ Q.

Run is accepting if Inf (r) ∈ ℱ .

Büchi acceptance is a special case of Rabin, Streett, and Muller acceptance.

Main Result
All models define the same 𝜔-languages:

𝜔 − regular languages = NBA-acceptable languages

= Rabin-acceptable languages

= Streett-acceptable languages

= Muller-acceptable languages.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 121 / 145

More on Infinite Words: Safra

Goal
Direct determinisation of NBA.

But not every NBA can be determinised.

Solution

Determinise NBA into Rabin/Muller automaton.

Idea: Apply a refined powerset construction to NBA.

States are trees with complex labelling.

In the lecture, we used Safraless, algebraic approach.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 122 / 145

More on Infinite Words: Algorithms

Check emptiness of NBA when they are given as composition

A1 × . . .× An.

Check emptiness of Rabin, Streett, and Muller automata.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 123 / 145

Part C Finite Trees

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 124 / 145

Goals and Problems
Words = structures with one successor predicate suc(x , y)
Trees = structures with several successors, say sucL(x , y) and sucR(x , y).

Trees in Computer Science

Parse trees of programs

Abstract data types

XML document processing

Here: Automata on Trees

finite word-languages = sets of finite words

𝜔-languages = sets of infinite words

Now: tree-languages = sets of finite trees

Application: Validity of XML documents.

Underlying problem

What are the sets of trees recognized by a finite tree automaton.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 125 / 145

9. Bottom-Up and Top-Down Tree Automata

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 126 / 145

Finite Trees

Definition (Finite tree)

A finite tree is a finite subset T ⊆ N* satisfying the following closure properties:

(1) If w .n ∈ T then w ∈ T .

(2) For n > 0 and w .n ∈ T we have w .(n − 1) ∈ T .

Condition (1): If a node is part of a tree, so is its father.

Condition (2): Children are labeled consecutively.

Definition (Ranked alphabet)

A ranked alphabet is a pair (Σ, rk) consisting of a finite set Σ and a rank function

rk : Σ → N.

Call rk(a) the rank of letter a ∈ Σ.
Denote the letters of rank n ∈ N by Σn := {a ∈ Σ | rk(a) = n}.

Intuitively:
a node with letter a expects rk(a) children,
similar to arities of function and predicate symbols.
Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 127 / 145

Finite Trees

Definition (Σ-trees)

Let (Σ, rk) be a ranked alphabet. A Σ-tree is a function

t : T → Σ

where T is a finite tree as defined above and additionally the following holds:
For all w ∈ T with t(w) = a ∈ Σ, we have

w .i ∈ T iff i < rk(a) for all i ∈ N.

Use 𝒯Σ to denote the set of all Σ-trees.

Condition states that if w is labeled by a ∈ Σ then it has precisely rk(a) children.

Note on Σ-trees
There are no two nodes with same label but different number of children.

The alphabet gives an upper bound on the number of children in a tree.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 128 / 145

Excursion: Yield of a Tree

Idea: Read the word that consists of the leaf letters left first.

Definition (Yield)

Let t : T → Σ be a tree. Its yield is defined inductively:

(1) If T = {𝜀} then yield(t) := t(𝜀).

(2) Let T = {𝜀} ∪ 0.T0 ∪ . . . ∪ n.Tn. Define subtrees

ti : Ti → Σ by ti (w) := t(i .w) for all 0 ≤ i ≤ n.

With this:

yield(t) := yield(t0) · . . . · yield(tn).

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 129 / 145

Bottom-Up Tree Automata: Syntax

Two automaton models for trees
Finite automata read words from left to right.

But theory would not change if we read words from right to left.

Trees look different when read from top to bottom vs. bottom-up:

From top to bottom, we distribute information from one node to many.

Bottom-up we aggregate information from children.

Gives different theories.

Definition (Bottom-up tree automaton: syntax)

A bottom-up tree automaton (BUTA) is a tuple A = ((Σ, rk),Q,→,QF) with

finite set of states Q, final states QF ⊆ Q, and

transition relation → = (→a)a∈Σ with

→a ⊆ Qn × Q where n = rk(a).

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 130 / 145

Bottom-Up Tree Automata: Semantics

A run of a BUTA labels nodes of a tree by states:

starting from the leafs, stopping at the root (bottom-up)

transitions read states at the roots of the subtrees.

No initial state:

Encoded into the transition relation for a ∈ Σ with rk(a) = 0.

Take →a ⊆ Q0 × Q as →a ⊆ Q.

This means the initial state is chosen according to the leaf letter.

Slight difference when compared to finite automata (but can always extend
finite automaton by one state to achieve this effect).

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 131 / 145

Bottom-Up Tree Automata: Semantics

Definition ((Accepting) run, tree language)

A run of a BUTA A = ((Σ, rk),Q,→,QF) on a Σ-tree t : T → Σ is a function

r : T → Q

so that for all w ∈ T we have

(q0, . . . , qn−1) →a q

where a = t(w), n = rk(a), q = r(w), and qi = r(w .i) for all i ∈ [0, n − 1].

A run is accepting if r(𝜀) ∈ QF .

The (tree) language of A is

L(A) := {t ∈ 𝒯Σ | A has an accepting run on t}.

A tree language L ⊆ 𝒯Σ is called regular if there is a BUTA A with L = L(A).

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 132 / 145

Determinism and Complementation

Definition (Deterministic BUTA)

A BUTA A = (Σ,Q,→,QF) is called deterministic (DBUTA) if for all a ∈ Σ and
all (q0, . . . , qn−1) ∈ Qn with n = rk(a) there is precisely one q ∈ Q so that

(q0, . . . , qn−1) →a q.

Are deterministic BUTA as expressive as non-deterministic BUTA?

Yes, apply the powerset construction.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 133 / 145

Determinism and Complementation

Theorem (Rabin & Scott on tree automata)

A tree language is accepted by a BUTA iff it is accepted by a DBUTA.

Proof.

Consider L(A) with A = (Σ,QA,→A,QA
F) a BUTA.

Define the DBUTA A′ := (Σ,P(QA),→,QF) where

QF := {Q ⊆ QA | Q ∩ QA
F ̸= ∅}

and for every a ∈ Σ with rk(a) = n we have

(Q0, . . . ,Qn−1) →a Q

where Q := {q ∈ QA | ∃q0 ∈ Q0, . . . , qn−1 ∈ Qn−1 : (q0, . . . , qn−1) →A
a q}.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 134 / 145

Determinism and Complementation

As a consequence, regular tree languages are closed under complementation.

Lemma (Closure under complementation)

Let A be a DBUTA accepting L. Then there is a DBUTA A accepting L.

Proof.
Swap final and non-final states.

If A = (Σ,Q,→,QF), set A := (Σ,Q,→,Q ∖ QF).

Regular tree languages are also closed under union.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 135 / 145

10. XML Schema Languages

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 136 / 145

XML Schema Languages

An XML document

<lecture>

<title>Applied Automata Theory</title>

<block>

<title>Finite Words</title>

<topic>

<title>WMSO</title>

<goal>Satisfiability</goal>

<approach>Buechi</approach>

</topic>

</block>

</lecture>

yields a tree that

reflects the structure of the document

without the data.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 137 / 145

XML Schema Languages

Goal
Pose requirements on the structure of XML documents:

Every lecture is split into blocks.

Blocks are divided into topics.

Observation
Requirements describe a tree language over the alphabet of tags.

Such a description is called a schema.

Document is valid wrt. a schema if it belongs to the tree language defined by
the schema.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 138 / 145

XML Schema Languages

Several XML schema languages exist

Document Type Definitions (DTD), XML Schema, Relax NG

Out interest: connection to automata theory

Expressiveness (not here)

Algorithmic problems
I Is a document valid wrt. a schema? (membership in the language)
I Is there a document that is valid for this schema? (sanity check, emptiness in

language theory, subproblem for inclusion)
I Are all documents valid wrt. one schema valid for another schema? (needed

when merging archives/companies, inclusion in language theory)

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 139 / 145

Document Type Definitions

A document type definition (DTD) is an extended context-free grammar.

Has regular expressions on the right hand side, the content model.

Tree language of this grammar = all derivation trees.

<!DOCTYPE LECTURE [

<!ELEMENT lecture (title, (block+ | (topic, exercise?)+))>

<!ELEMENT block (title, (topic, exercise?)+)>

<!ELEMENT topic (title, goal, problem?, approach)>

<!ELEMENT title (#PCDATA)>

...

]>

Operators in the content model:

| := choice + := one or more occurrences

, := sequence ? := zero or one occurrence

#PCDATA := parsed character data, arbitrary character sequence for data

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 140 / 145

Document Type Definitions
The DTD

<!DOCTYPE LECTURE [

<!ELEMENT lecture (title, (block+ | (topic, exercise?)+))>

<!ELEMENT block (title, (topic, exercise?)+)>

<!ELEMENT topic (title, goal, problem?, approach)>

<!ELEMENT title (#PCDATA)>

...

]>

as an extended context-free grammar:

lecture → title · (block+ + (topic.(exercise + 𝜀))+)

block → title · (topic · (exercise + 𝜀))+

topic → title · goal · (problem + 𝜀) · approach
title → 𝜀

. . .

To define the tree language described by a DTD, need hedge automata.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 141 / 145

Unranked Trees

Reminder

In a ranked alphabet (Σ, rk), letters a ∈ Σ have a rank rk(a).

Σ-trees t : T → Σ obey the ranks.

Unranked trees
Consider again unranked alphabet Σ and corresponding unranked trees:

Each node has arbitrarily but finitely many children.

Tree t : T → Σ without further constraints is called an unranked tree.

Call children t0, . . . , tn−1 in (a, (t0, . . . , tn−1)) a hedge.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 142 / 145

Hedge Automata

Hedge automata process unranked trees bottom-up.

Goal: Solve membership.

Problem

Number of successors of a node is not bounded (unbounded, but finite branching
in the language).

Transitions cannot be listed.

Represent symbolically this infinite number of transitions.

Definition (Hedge automata: syntax)

A (non-deterministic) hedge automaton (NHA) is a tuple A = (Σ,Q,→,QF) with

Q a finite set of states, final states QF ⊆ Q, and

→ ⊆ P(Q*) × Σ × Q.

We require R ⊆ Q* on the lhs of transitions to be regular.

These R are called horizontal languages.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 143 / 145

Hedge Automata

Definition (Hedge automata: semantics)

Let A = (Σ,Q,→,QF) be an NHA.

A run of A on t : T → Σ is a function

r : T → Q

so that for all w ∈ T with r(w) = q, t(w) = a, and n = number of successors of
w , we have a transition

R →a q with r(w .0) . . . r(w .(n − 1)) ∈ R.

To apply a transition R →a q at a leaf, we need 𝜀 ∈ R.

A run is accepting if r(𝜀) ∈ QF .

Language of A is

L(A) := {t : T → Σ | there is an accepting run of A on t}.

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 144 / 145

Document Type Definitions

Definition (Document type definition)

A document type definition (DTD) is a tuple D = (Σ, s, 𝛿) with

start symbol s ∈ Σ

function 𝛿 : Σ → REGΣ that assigns each a ∈ Σ a regular expression over Σ.

From DTDs to Hedge Automata

To define the language of a DTD D = (Σ, s, 𝛿), understand it as hedge automaton

AD := (Σ, {qa | a ∈ Σ},→, {qs}).

For the transitions, understand L(𝛿(a)) ⊆ Σ* as subset of Q* by taking
a1 . . . an as qa1 . . . qan . With this:

L(𝛿(a)) →a qa for all a ∈ Σ.

The language of a DTD is L(D) := L(AD).

Roland Meyer (TU KL) Applied Automata Theory (WiSe 2012) 145 / 145

	Regular Languages and Finite Automata
	Regular Languages
	Finite Automata
	Equivalence
	Determinism and Complementation
	Decidability and Complexity

	Weak Monadic Second-Order Logic
	Syntax and Semantics of WMSO
	Büchi's Theorem

	Star-free Languages
	Ehrenfeucht-Fraïssé Games
	Star-free Languages
	McNaughton and Papert's Theorem

	Presburger Arithmetic
	Syntax and Semantics of Presburger Arithmetic
	Representing Solution Spaces
	Quantifier Elimination

	-Regular Languages and Büchi Automata
	-Regular Languages
	Büchi Automata
	Determinism

	Linear-time Temporal Logic
	Syntax and Semantics of LTL
	From LTL to NBA

	Model Checking Pushdown Systems
	Syntax and Semantics of Pushdown Systems
	Representation Structure: P-NFA
	Computing Predecessors
	Model Checking LTL

	More on Infinite Words
	Bottom-Up and Top-Down Tree Automata
	Syntax and Semantics of Bottom-Up Tree Automata
	Determinism and Complementation

	XML Schema Languages
	Document Type Definitions
	Unranked Trees and Hedge Automata

