Applied Automata Theory (WS 2013/2014) Technische Universität Kaiserslautern

 Exercise Sheet 1

 Exercise Sheet 1}

Jun.-Prof. Roland Meyer, Georgel Calin

Exercise 1.1 REG \Rightarrow NFA

Use the method discussed in class to construct an NFA accepting $\left((w e)^{*} l(c o)^{*}+(m e)^{*}\right)^{*}$.

Exercise 1.2 NFA \Rightarrow REG

Use equations and Arden's Lemma to find a regular expression for the following NFA:

Exercise 1.3 Arden's Lemma

Consider the following extension: If $U, V \subseteq \Sigma^{*}$ and $\varepsilon \in U$ then all solutions $L \subseteq \Sigma^{*}$ of the equation $L=U L \cup V$ are precisely the elements of $\mathcal{L}=\left\{U^{*} V^{\prime} \mid V \subseteq V^{\prime} \subseteq \Sigma^{*}\right\}$.

Prove the extension by solving (a) and (b) below:
(a) Show that if L is a solution of $L=U L \cup V$ then $L \in \mathcal{L}$.
(b) Show that every $L \in \mathcal{L}$ satisfies $L=U L \cup V$.

Exercise 1.4 Languages \& Formulas

Provide some arguments with your solution for the following tasks:
(a) Find a formula φ such that $L(\varphi)=\Sigma^{*} a \Sigma^{*} b^{+}$.
(b) What is the language described by $\exists y \forall x \forall z . x<y \wedge y<z \rightarrow \neg P_{a}(x) \wedge P_{b}(y)$?

