Applied Automata Theory (WS 2013/2014) Technische Universität Kaiserslautern

Exercise Sheet 7

Jun.-Prof. Roland Meyer, Georgel Calin

Due: Tue, Dec 10

Exercise 7.1 Reversal-bounded Counter Machines

Consider the code of 2-counter machine M with counters c_1 , c_2 initially set to 0:

machine M							
l_0 :	$\texttt{inc}(c_1);$	goto	l_1	//	initial	control	state
l_1 :	$\texttt{inc}(c_2);$	goto	l_0				
l_1 :	$ extsf{zero}(c_1);$	goto	l_2				
l_1 :	$\texttt{dec}(c_2);$	goto	l_3				
l_2 :	$ extsf{zero}(c_2);$	goto	l_a				
l_3 :	$\texttt{dec}(c_1);$	goto	l_1				
l_3 :	$\texttt{inc}(c_2);$	goto	l_4				
l_4 :	$ ext{dec}(c_1);$	goto	l_5				
l_5 :	$\texttt{inc}(c_1);$	goto	l_3				
l_a :	// accepti	ng co	ntı	rol	state		

Represent the above code as an automata with $\bigcup_{c \in \{c_1, c_2\}} \{inc(c), dec(c), zero(c)\}$ -labeled transitions and determine how many reversals are needed to reach the accepting state.

Exercise 7.2 NBA Languages = ω -regular Languages

(a) not graded

It was discussed in class that ω -regular languages are NBA definable.

- (a) Show that if there exists an NBA that accepts $L \subseteq \Sigma^{\omega}$ then L is ω -regular.
- (b) Construct an NBA that accepts $L = (ab + c)^*((aa + b)c)^{\omega} + (a^*c)^{\omega}$

Exercise 7.3 Naive Interpretation of NFAs as NBAs

Let $A = (\Sigma, Q, q_0, \rightarrow, Q_F)$ be an NFA with $\emptyset \neq L(A) \subseteq \Sigma^+$ and, for any two states $q, q' \in Q$, define $L_{q,q'}^{\neq \epsilon} := \{w \in \Sigma^+ | q \xrightarrow{w} q' \text{ in } A\}$. If $L_{\omega}(A)$ is the ω -regular language accepted by A (interpreted as an NBA), one can **wrongly** believe that $L_{\omega}(A) = L(A)^{\omega}$.

(a) Find a counterexample to $L_{\omega}(A) = L(A)^{\omega}$ when $\emptyset \neq L_{q,q}^{\neq \epsilon} \subseteq L(A)$ for all $q \in Q_F$.

(b) Argument that if $L(A) = \bigcup_{q,q' \in Q_F} L_{q,q'}^{\neq \epsilon}$ then $L_{\omega}(A) = L(A)^{\omega}$ holds.

(c) Show that if $L(A) = L^+$ for some regular language L then $L_{\omega}(A) = L(A)^{\omega}$ holds.

Reminder: if
$$L \subseteq \Sigma^+$$
 then $L^{\omega} := \{w_0 w_1 \dots \in \Sigma^{\omega} \mid w_i \in L \text{ for all } i \ge 0\}.$

Exercise 7.4 Generalised ω -regular Expressions

Regular expressions over Σ can be extended to encode languages over $\Sigma^* \cup \Sigma^{\omega}$ as follows:

 $\alpha ::= \emptyset \mid a \mid \alpha + \alpha \mid \alpha.\alpha \mid \alpha^* \mid \alpha^{\omega} \quad \text{with } a \in \Sigma.$

The language $L_g(\alpha) \subseteq \Sigma^* \cup \Sigma^{\omega}$ of a generalised ω -regexp is defined recursively:

$$\begin{split} L_g(\emptyset) &= \emptyset & L_g(\alpha + \beta) = L_g(\alpha) \cup L_g(\beta) \\ L_g(a) &= \{a\} & L_g(\alpha, \beta) = (L_g(\alpha) \cap \Sigma^*) \cdot L_g(\beta) \cup (L_g(\alpha) \cap \Sigma^\omega). \end{split}$$

Concatenation of a language $R\subseteq \Sigma^*$ with a subsequent $L\subseteq \Sigma^*\cup \Sigma^\omega$ means

$$R.L := \{u.v \in \Sigma^* \mid u \in R \text{ and } v \in L \cap \Sigma^*\} \cup \{u.v \in \Sigma^\omega \mid u \in R \text{ and } v \in L \cap \Sigma^\omega\}.$$

And, since $\emptyset^* = \{\epsilon\} = \emptyset^{\omega}$, the Kleene-iteration and ω -iteration require special care:

$$L_g(\alpha^*) = \begin{cases} (L_g(\alpha) \cap \Sigma^{\omega}) \cup \{\epsilon\} & \text{if } L_g(\alpha) \cap \Sigma^* \subseteq \{\epsilon\} \\ (L_g(\alpha) \cap \Sigma^{\omega}) \cup (L_g(\alpha) \cap \Sigma^*)^* & \text{otherwise} \end{cases}$$
$$L_g(\alpha^{\omega}) = \begin{cases} (L_g(\alpha) \cap \Sigma^{\omega}) \cup (L_g(\alpha) \cap \Sigma^+)^{\omega} & \text{if } L_g(\alpha) \cap \Sigma^+ \neq \emptyset \\ (L_g(\alpha) \cap \Sigma^{\omega}) \cup \{\epsilon\} & \text{otherwise.} \end{cases}$$

Your task: show that for every generalised ω -regexp α there is another

$$\alpha' = \gamma + \sum_{i \in I \text{ finite}} \alpha_i \beta_i^{\omega} \text{ with } \gamma, \alpha_i, \beta_i \subseteq \Sigma^*, \ \beta_i \cap \Sigma^+ \neq \emptyset \text{ for every } i \in I$$

such that $L_g(\alpha) = L_g(\alpha')$.

Note: generalised ω -regular expressions over Σ^{ω} describe the ω -regular languages.