Exercise Sheet 7

Jun.-Prof. Roland Meyer, Georgel Calin
Due: Tue, Dec 10

Exercise 7.1 Reversal-bounded Counter Machines

Consider the code of 2-counter machine M with counters c_{1}, c_{2} initially set to 0 :

```
machine M
    l}\mp@subsup{l}{0}{}\mathrm{ inc(c); goto l l // initial control state
    l}\mp@subsup{l}{1}{}:\operatorname{inc}(\mp@subsup{c}{2}{}); goto l
    l}\mp@subsup{l}{1}{}\mathrm{ : zero(c
    l}\mp@subsup{l}{1}{}:\operatorname{dec}(\mp@subsup{c}{2}{}); goto l
    l}\mp@subsup{l}{2}{\mathrm{ : zero(c}
    l}\mp@subsup{l}{3}{}:\operatorname{dec}(\mp@subsup{c}{1}{}); goto l l
```



```
    l4: dec(c, ); goto l}\mp@subsup{l}{5}{
    l}\mp@code{5}:\operatorname{inc}(\mp@subsup{c}{1}{}); goto l l <
    la}: // accepting control stat
```

Represent the above code as an automata with $\bigcup_{c \in\left\{c_{1}, c_{2}\right\}}\{\operatorname{inc}(c)$, $\operatorname{dec}(c)$, zero $(c)\}$-labeled transitions and determine how many reversals are needed to reach the accepting state.

Exercise 7.2 NBA Languages $=\omega$-regular Languages

It was discussed in class that ω-regular languages are NBA definable.
(a) Show that if there exists an NBA that accepts $L \subseteq \Sigma^{\omega}$ then L is ω-regular.
(b) Construct an NBA that accepts $L=(a b+c)^{*}((a a+b) c)^{\omega}+\left(a^{*} c\right)^{\omega}$

Exercise 7.3 Naive Interpretation of NFAs as NBAs

Let $A=\left(\Sigma, Q, q_{0}, \rightarrow, Q_{F}\right)$ be an NFA with $\emptyset \neq L(A) \subseteq \Sigma^{+}$and, for any two states $q, q^{\prime} \in Q$, define $L_{q, q^{\prime}}^{\neq \epsilon}:=\left\{w \in \Sigma^{+} \mid q \xrightarrow{w} q^{\prime}\right.$ in $\left.A\right\}$. If $L_{\omega}(A)$ is the ω-regular language accepted by A (interpreted as an NBA), one can wrongly believe that $L_{\omega}(A)=L(A)^{\omega}$.
(a) Find a counterexample to $L_{\omega}(A)=L(A)^{\omega}$ when $\emptyset \neq L_{q, q}^{\neq \epsilon} \subseteq L(A)$ for all $q \in Q_{F}$.
(b) Argument that if $L(A)=\bigcup_{q, q^{\prime} \in Q_{F}} L_{q, q^{\prime}}^{\neq \epsilon}$ then $L_{\omega}(A)=L(A)^{\omega}$ holds.
(c) Show that if $L(A)=L^{+}$for some regular language L then $L_{\omega}(A)=L(A)^{\omega}$ holds.

Reminder: if $L \subseteq \Sigma^{+}$then $L^{\omega}:=\left\{w_{0} w_{1} \ldots \in \Sigma^{\omega} \mid w_{i} \in L\right.$ for all $\left.i \geq 0\right\}$.

Exercise 7.4 Generalised ω-regular Expressions

Regular expressions over Σ can be extended to encode languages over $\Sigma^{*} \cup \Sigma^{\omega}$ as follows:

$$
\alpha::=\emptyset|a| \alpha+\alpha|\alpha . \alpha| \alpha^{*} \mid \alpha^{\omega} \quad \text { with } a \in \Sigma .
$$

The language $L_{g}(\alpha) \subseteq \Sigma^{*} \cup \Sigma^{\omega}$ of a generalised ω-regexp is defined recursively:

$$
\left.\begin{array}{lrl}
L_{g}(\emptyset) & =\emptyset & L_{g}(\alpha+\beta)
\end{array}\right)=L_{g}(\alpha) \cup L_{g}(\beta) .
$$

Concatenation of a language $R \subseteq \Sigma^{*}$ with a subsequent $L \subseteq \Sigma^{*} \cup \Sigma^{\omega}$ means

$$
R . L:=\left\{u . v \in \Sigma^{*} \mid u \in R \text { and } v \in L \cap \Sigma^{*}\right\} \cup\left\{u . v \in \Sigma^{\omega} \mid u \in R \text { and } v \in L \cap \Sigma^{\omega}\right\} .
$$

And, since $\emptyset^{*}=\{\epsilon\}=\emptyset^{\omega}$, the Kleene-iteration and ω-iteration require special care:

$$
\begin{aligned}
& L_{g}\left(\alpha^{*}\right)= \begin{cases}\left(L_{g}(\alpha) \cap \Sigma^{\omega}\right) \cup\{\epsilon\} & \text { if } L_{g}(\alpha) \cap \Sigma^{*} \subseteq\{\epsilon\} \\
\left(L_{g}(\alpha) \cap \Sigma^{\omega}\right) \cup\left(L_{g}(\alpha) \cap \Sigma^{*}\right)^{*} & \text { otherwise }\end{cases} \\
& L_{g}\left(\alpha^{\omega}\right)= \begin{cases}\left(L_{g}(\alpha) \cap \Sigma^{\omega}\right) \cup\left(L_{g}(\alpha) \cap \Sigma^{+}\right)^{\omega} & \text { if } L_{g}(\alpha) \cap \Sigma^{+} \neq \emptyset \\
\left(L_{g}(\alpha) \cap \Sigma^{\omega}\right) \cup\{\epsilon\} & \text { otherwise. }\end{cases}
\end{aligned}
$$

Your task: show that for every generalised ω-regexp α there is another

$$
\alpha^{\prime}=\gamma+\sum_{i \in I \text { finite }} \alpha_{i} \cdot \beta_{i}^{\omega} \text { with } \gamma, \alpha_{i}, \beta_{i} \subseteq \Sigma^{*}, \beta_{i} \cap \Sigma^{+} \neq \emptyset \text { for every } i \in I
$$

such that $L_{g}(\alpha)=L_{g}\left(\alpha^{\prime}\right)$.
Note: generalised ω-regular expressions over Σ^{ω} describe the ω-regular languages.

