Applied Automata Theory (WS 2013/2014)

Technische Universität Kaiserslautern

Exercise Sheet 10

Jun.-Prof. Roland Meyer, Georgel Calin

Due: Tue, Jan 14

Exercise 10.1 Büchi Pushdown Systems

Solve the accepting run problem for the Büchi-pushdown system over $\Gamma = \{\gamma, \delta\}$ below:

- (a) Find all $(s, \gamma) \in Q \times \Gamma$ such that $(s, \gamma) \to^+ (r, u) \to^* (s, \gamma \cdot v)$ for some $u, v \in \Gamma^*$.
- (b) Compute $A_{\mathsf{pre}^*(C)}$ for $C = \{(s, \gamma \cdot \Gamma^*) \mid (s, \gamma) \text{ is a configuration found in (a)}\}.$

Note: the lowercase $\gamma \in \Gamma$ in (a) and (b) is an arbitrary symbol.

Exercise 10.2 Boolean Satisfiability

Let $\Sigma = \{ \land, \lor, \neg, 0, 1, x \}$ with $rk(\land) = rk(\lor) = 2, rk(\lnot) = 1, rk(0) = rk(1) = rk(x) = 0.$

- (a) Give a deterministic BUTA that recognises the satisfiable Boolean formulas over x.
- (b) Use (a) to establish whether $\neg(x \land 0) \lor (\neg x \land 1)$ and $(x \lor 0) \land (\neg x \land 1)$ are satisfiable.

Exercise 10.3 Tree Language Acceptance

Let $\Sigma = \{a, b, c, d\}$ with rk(a) = rk(b) = 2, respectively rk(c) = rk(d) = 0. Establish which of the following tree languages are accepted by some BUTA.

- (a) $L_1 := \{t \in \mathcal{T}_{\Sigma} \mid \text{the path } \epsilon, 0, 01, 010, 0101, \dots \text{ in } t \text{ contains an even number of } a's\}.$
- (b) $L_2 := \{ t \in \mathcal{T}_{\Sigma} \mid t \text{ is an unbalanced tree} \}.$
- (c) $L_3 := \{t \in \mathcal{T}_{\Sigma} \mid \text{there are nodes } u, v \text{ in } t \text{ with } t(u) = c, t(v) = d \text{ and } u \text{ is left of } v\}.$
- (d) $L_4 := \{t \in \mathcal{T}_{\Sigma} \mid \text{precisely 2014 of } t \text{'s leaves are labelled by } c \}.$

Determine which of the languages above are also accepted by a deterministic TDTA.

Exercise 10.4 Emptiness of TDTA

Give an algorithm that decides emptiness of nondeterministic TDTA without checking emptiness of an equivalently encoded BUTA.

Prove termination and correctness of your algorithm.