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Abstract

Let S = C{x}/I be a curve singularity, where I is de�ned by polynomials.
The Deligne number of S is de�ned by 3δ−m, where δ is the delta invariant
and m is the length of DerC(S)/DerC(S). In this master's thesis we show
that we can reduce the computation of this and other invariants of S to
computations in Q[x]〈x〉. To achieve this, we �rst show that integral closure,
Kähler di�erentials and derivation modules behave well with respect to �eld
extension and completion. Using that the length of a module only changes
up to a factor under �at extensions, we are able to prove that the length
does not change at all under the aforementioned operations. Finally, we will
prove stability results, stating that the the delta invariant, the multiplicity of
the conductor and the Deligne number do not change under �eld extension
and completion. Using this, we will see that the mentioned invariants keep
their values if we pass from Q[x]〈x〉/I to S.
We will also state algorithms for the invariants. These can be applied over
Q[x]〈x〉 and taking the stability results into account, we can deduce that we
are able to e�ectively compute the 3 invariants for curve singularities.

In addition, we will also o�er a Singular implementation of di�erential
algebras. We state results which allow us to represent these algebras and
their elements and we provide a user-friendly and intuitive environment for
computing with these objects.
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Introduction

In the study of curve singularities, there were several approaches to character-
ize quasi-homogeneity: In 1966, O. Zariski showed that quasi-homogeneous
plane curves are those curves whose module of di�erentials have maximal
torsion, see [Zar66]. Another di�erential approach is due to K. Saito in
1971, see [Sai71]. He proved that a hypersurface singularity R = C{x}/〈f〉
is quasi-homogeneous if and only if there is a derivation δ : R → R that
preserves f , which means: δ(f) = f . He also proves the equivalence to a
third fact: the exactness of the Poincaré complex. In 1977, G. Scheja and
H. Wiebe showed that for a reduced complete intersection singularity R, the
following equivalence holds: R is quasi-homogeneous if and only if there is
an epimorphism from the module of di�erentials to the maximal ideal of R,
see [SW77]. This was generalized by E. Kunz and W. Ruppert to arbitrary
reduced curve singularities in the same year, see [KR77]. A numerical char-
acterization was found by G.-M. Greuel in 1982, see [Gre82]. He stated that
an irreducible Gorenstein singularity is quasi-homogeneous if and only if the
Deligne number e and the Milnor number µ coincide.
The Deligne number of a curve singularity is named after P. Deligne. In his
work [Mr0, Exposé X] from 1973, the number arose naturally as dimension of
a smoothing component of the semiuniversal base: if R is a reduced smooth-
able curve singularity and E a smoothing component, then dimE = 3δ−m,
where δ denotes the delta invariant and m = lengthR(DerC(R)/DerC(R)),
see [Mr0, Theorem 2.27]. The embedding DerC(R) ↪→ DerC(R) goes back
to a result of Seidenberg. In 1966, he has proven that there is an inclusion
DerC(R) ↪→ DerC(R) in the case, where R is an integral domain, see [Sei66].
Since R is reduced, the normalization R is a product of normalizations of
integral domains: R =

∏
R/P , where P runs over all branches of R. One

can show that the module DerC(R) embeds into
∏

DerC(R/P ) and with the
result of Seidenberg,

∏
DerC(R/P ) embeds into

∏
DerC(R/P ) = DerC(R).

Although Deligne`s formula is a local statement, he used global techniques to
show it. The �rst local proof of the formula was found by G.-M. Greuel and
E. Looijenga in 1984. They proved a conjecture of J. Wahl ([Wah81]) about
the dimension of a smoothing component of a complex-analytic germ with
isolated singularity, see [GL85]. In the article, they were also able to show
that their result is a generalization of Deligne`s formula and they deduced a
local proof of it.
We will de�ne the Deligne number to be e = 3δ −m like in [Gre82]. G.-M.
Greuel did not only state the aforementioned numerical criterion for quasi-
homogeneity in this paper, he also related the Deligne number to other in-
variants of R and gave many equivalent formulas for it. It was even possible
to establish a link between the Deligne number and the torsion module of
Ω̃1
R/C, the universally �nite module of di�erentials of R. This idea was then

used by by G.-M. Greuel, B. Martin and G. P�ster in 1985 to generalize the
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numerical criterion to reduced Gorenstein singularities, see [GMP85]. They
also proved a third equivalent description of quasi-homogeneity which is a
generalization of the criterion given in [Zar66]: R is quasi-homogeneous if
and only if the module of di�erentials of R has maximal torsion.
We can deduce that computing the Deligne number is of particular inter-
est; we could decide if Gorenstein curve singularities are quasi-homogeneous
and we could relate the number to other invariants, as in [Gre82]. But we
need to state an algorithm to compute this number, and other invariants,
and we need to argue why we can compute over the convergent power se-
ries ring C{x}. In fact, we will state algorithms for the delta invariant, the
multiplicity of the conductor and the Deligne number and we will reduce
computations over C{x} to computations over Q[x]〈x〉 using �atness proper-
ties. If R = C{x}/I, where I is de�ned by polynomials, then we can perform
the following �at extensions of Q[x]〈x〉/I: �rst, we extend the ground �eld
from Q to C. After that, we take the 〈x〉-adic completion and altogether we
get the �at extensions:

Q[x]〈x〉/I → C[x]〈x〉/IC[x]〈x〉 → C[[x]]/IC[[x]]

On the other hand, we can also take the 〈x〉-adic completion of R and obtain
the �at extension:

C{x}/I → C[[x]]/IC[[x]]

During the thesis we will prove stability results, stating that the mentioned
invariants do not change under �eld extension and completion. Hence, we
can compute the invariants over the ring Q[x]〈x〉/I and they keep their value
when passing to R.
The basis of this consideration is established in the �rst chapters of this the-
sis. In Chapter 1, we give a short introduction to associated primes, reduced
rings, separable �eld extensions and completion. It can be seen as a collec-
tion of properties which we will use over and over again. Chapter 2 treats
the normalization of reduced rings. We will give the basic de�nitions and
properties, argue when the normalization is �nite as a module and reason
about normal rings. In addition, we give an introduction to excellent rings
since their normalization and completion commute, which is useful when we
prove stability results concerning completion. We will also prove a theorem
which allows us to commute �eld extension and integral closure. This will be
helpful in the proofs of stability results concerning �eld extensions. Chapter
3 considers Kähler di�erentials, di�erential algebras, derivations and univer-
sally �nite di�erentials. We will show that these notions partly commute
with �eld extension and completion. In Chapter 4, we �rst prove results,
stating that the length of modules is preserved under �eld extension and
completion. Then we de�ne the aforementioned invariants and prove the
stability results. We also establish some algorithmic ideas to compute the
invariants.
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Algorithms are considered in Chapter 5. First, we state some basic algo-
rithms of rings and modules that we will need, then we give a short intro-
duction to normalization algorithms of Grauert-Remmert type and �nally,
we state the algorithms for computing the invariants. We will also consider
some examples of quasi-homogeneous and non-quasi-homogeneous curve sin-
gularities and reason about their invariants.

The appendix of this thesis consists of three chapters. In A, we collect
some basic results from several topics of commutative algebra. Chapter B
gives insight into a Singular implementation of the algorithms for comput-
ing the invariants. And in Chapter C, we give an introduction to an imple-
mentation of di�erential algebras using Singular: the library difform.lib.

vi



Table of Contents

1 Associated primes, reduced rings and completion 1
1.1 Associated primes . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Reduced rings . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Separable �eld extensions and geometrically reduced algebras 12
1.4 Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Normalization 20
2.1 The integral closure and integrally closed rings . . . . . . . . 20
2.2 Finitely generated normalizations . . . . . . . . . . . . . . . . 26
2.3 Normal rings . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Normalization and completion - Excellent rings . . . . . . . . 32
2.5 Normalization and �eld extension . . . . . . . . . . . . . . . . 36

3 Derivations, Kähler di�erentials and universally �nite di�er-
entials 39
3.1 Kähler di�erentials . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Di�erential algebras . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Universally �nite di�erentials . . . . . . . . . . . . . . . . . . 53
3.4 Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Invariants 66
4.1 The preservation of length . . . . . . . . . . . . . . . . . . . . 66
4.2 Delta invariant . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Conductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4 The Deligne number . . . . . . . . . . . . . . . . . . . . . . . 77

5 Computational aspects of invariants 87
5.1 Basic algorithms for rings and ideals . . . . . . . . . . . . . . 87
5.2 Basic algorithms for modules . . . . . . . . . . . . . . . . . . 92
5.3 Computing the normalization . . . . . . . . . . . . . . . . . . 96
5.4 Algorithms for computing invariants . . . . . . . . . . . . . . 98
5.5 Justi�cation and examples . . . . . . . . . . . . . . . . . . . . 104
5.6 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

vii



A Basic facts from commutative algebra 110
A.1 Extension and contraction of ideals, localization . . . . . . . . 110
A.2 Flatness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
A.3 Artinian rings and product rings . . . . . . . . . . . . . . . . 113
A.4 Algebras essentially of �nite type . . . . . . . . . . . . . . . . 116

B Implementation of algorithms for computing invariants 117

C A Singular implementation of di�erential algebras 131
C.1 Representation and construction of di�erential algebras . . . . 131
C.2 Construction and basic operations of di�erential forms . . . . 133
C.3 Computations with the universal derivation . . . . . . . . . . 136
C.4 Representation and construction of derivations . . . . . . . . 136
C.5 The Lie derivative . . . . . . . . . . . . . . . . . . . . . . . . 138

viii



1. Associated primes, reduced

rings and completion

The �rst chapter of this thesis contains some basic notions from commuta-
tive algebra, that are needed in later chapters. In 1.1, we give a recall of
what associated and minimal primes are. Section 1.2 gives the de�nition
of reduced rings, states some basic properties and shows how �nitely many
minimal prime ideals in�uence the de�nition. A short excursion to separable
�eld extensions and geometrically reduced algebras is given in 1.3: We state
some properties and introduce the important notion of perfect �elds. The
last section, 1.4, is a recall of the completion of a module.

Motivated by geometry, the main theorems of this introduction are valid
for reduced Noetherian algebras over �elds of characteristic 0 (or perfect
�elds) - we will later focus on rings of this type.

1.1 Associated primes

Associated primes naturally arose as a generalization of the fundamental
theorem of arithmetic. In more general rings than Z, the UFD-property
may fail and we are not longer able to decompose elements into products
of primes. But if the considered ring is at least Noetherian, we still can
represent an ideal I as intersections of primary ideals. This is called primary
decomposition. The associated primes of I are then the radicals of the pri-
mary ideals appearing in the decomposition. We refer to [AM69, Chapter 4]
for the theory of primary decomposition.
Of particular importance are minimal associated primes: these are associated
primes that satisfy a certain minimality property over I. Such ideals will be
helpful when dealing with reduced rings in Section 1.2 and we will use them
to lift derivations to the normalization of a ring in Section 4.4. Minimal
associated primes even have a geometric interpretation: they correspond to
the branches of a variety.
In order to circumvent a restriction to ideals, we introduce associated primes
for modules:
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De�nition 1.1.1. Let R be a ring andM an R-module. A prime ideal P of
R is called associated prime ofM if P = AnnR(m) for an element m ∈M .
The set of all associated primes is denoted by AssR(M) or just Ass(M) if it
is clear which ring is used.

Since the annihilator of an element m ∈M is the kernel of the multipli-
cation map R → M , r 7→ r ·m, we get an alternative condition for a prime
ideal to be associated to a module and we can collect some useful facts:

Remark 1.1.2. Let R be a ring and M an R-module.

a) A prime ideal P is an associated prime of M if and only if there is an
R-linear injection R/P ↪→M .

b) If N is a submodule of M , then we have: Ass(N) ⊆ Ass(M).

c) If P is a prime ideal of R, then AssR(R/P ) = {P}.

Proof. One direction in the proof of a) is clear by the above consideration.
For the other direction, let ϕ : R/P ↪→M be an injection. Denote bym ∈M
the image of 1 ∈ R/P , then we get for an element x ∈ P :

0 = ϕ(0) = ϕ(x) = x · ϕ(1) = x ·m

So x is in the annihilator of m. If we start with an element y from AnnR(m),
we can again use the R-linearity of ϕ:

0 = y ·m = y · ϕ(1) = ϕ(y)

The map is injective, hence y ∈ P . Altogether, P = AnnR(m) and P is an
associated prime of M .

The proof of b) is clear by the characterization given in a): any injective
map R/P ↪→ N can be composed with N ↪→M to an injection R/P ↪→M .

In order to prove part c), let P be a prime ideal of R. It is clear that P
is an associated prime of R/P since we have the injective identity map from
R/P to itself. Now let Q be an arbitrary associated prime ideal of R/P .
Then we get an injection ϕ : R/Q ↪→ R/P . We have to show the equality
P = Q. Let x ∈ P , then we have:

0 = x · ϕ(1) = ϕ(x)

Since ϕ is injective, x has to lie in Q. For the converse inclusion, let x ∈ Q.
Then the equation

0 = ϕ(x) = x · ϕ(1)

and the fact that R/P is an integral domain imply that either ϕ(1) or x is
0. If the image of 1 under ϕ would be zero, then ϕ would be the zero map
which is not injective. Hence, x = 0 and x ∈ P . �
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Example 1.1.3.

a) Let p be a prime number in Z. The associated prime ideals of Z/pZ as
Z-module can be easily determined using remark 1.1.2: AssZ(Z/pZ) =
{pZ}.

b) Let k be a �eld, R = k[x, y] and M = k[x, y]/〈x2, xy〉. Then we show
that AssR(M) consists of the prime ideals 〈x〉 and 〈x, y〉:

Proof. First, we prove that we can represent the two prime ideals as
annihilator, hence they are associated to M .

The ideal 〈x〉 is the annihilator AnnR(y):
The monomial x clearly annihilates y, so the inclusion ” ⊆ ” is clear.
Let f be from AnnR(y), then we have that 0 = fy and thus: fy ∈
〈x2, xy〉. So we get a representation

fy = gx2 + hxy

⇔ fy − hxy︸ ︷︷ ︸
∈〈y〉

= gx2

and since 〈y〉 is a prime ideal in R and x2 /∈ 〈y〉, the polynomial g has
to be in 〈y〉. But then we can rule out y on both sides in

fy = gx2 + hxy

since R is an integral domain and obtain that f ∈ 〈x〉.
With the same kind of arguments, one can show that 〈x, y〉 = AnnR(x).

To complete the proof, we need to show that no other prime ideals are
annihilators of elements of M . Assume there is a prime ideal P of R
which is associated to M . Then P = AnnR(f), where f is from M .
We immediately get that x2 ∈ P since this annihilates any element in
M . This implies x ∈ P because P is prime. The ideal P annihilates
f , so fP ⊆ 〈x2, xy〉 ⊆ 〈x〉 and thus f ∈ 〈x〉 or P ⊆ 〈x〉. If P ⊆ 〈x〉,
we would get that P = 〈x〉 and if f ∈ 〈x〉, then y ∈ P and therefore
P = 〈x, y〉. �

c) If R is an integral domain, then the only associated prime of R is
〈0〉: Of course, 〈0〉 = AnnR(1) and if P is a prime ideal that is the
annihilator of an element x ∈ R, then Px = 0. So, either x = 0 or
P = 0. But x cannot be 0 since then, P = R, which is a contradiction
to P being a prime ideal.
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By the Noetherian property of rings, we get a maximal element of any
non-empty set of ideals. The following proposition is proven via this fact and
it ensures a desirable behaviour of the associated primes of a module: they
vanish if and only if the module itself vanishes. Also the �niteness, which is
encoded in the Noetherian property, in�uences the associated primes. This
can be seen in Lemma 1.1.5.

Proposition 1.1.4. Let R be a Noetherian ring and M an R-module. Then
M = 0 if and only if Ass(M) = ∅.

Proof. The proof can be found in [Mat80, Proposition 7.B, Corollary 1]. �

Lemma 1.1.5. If R is a Noetherian ring and M a �nitely generated R-
module, then Ass(M) is a �nite set.

Proof. This is [Stacks, Tag 00LC] �

We know that under localization of a ring R at a multiplicatively closed
set S ⊆ R, we get a one-to-one correspondence for prime ideals:

{P ∈ Spec(R) |P ∩ S = ∅} −→ Spec(S−1R)

P 7−→ S−1P

It turns out, that a restriction of this map is a one-to-one correspondence on
the associated primes:

Proposition 1.1.6. Let R be a Noetherian ring, M an R-module and S a
multiplicatively closed subset of R. Then there is a one-to-one correspon-
dence:

{P ∈ AssR(M) |P ∩ S = ∅} −→ AssS−1R(S−1M)

P 7−→ S−1P

Proof. A detailed proof is given in [AK70, Proposition 3.9]. �

We want to relate the support of an R-module M and the associated
primes of M to give a characterization of the minimal elements in AssR(M).
So, focusing on a single prime ideal Q, we obtain by the above proposition:

AssRQ
(MQ) = {P ∈ AssR(M)|P ⊆ Q}

Hence, using Proposition 1.1.4, we can precisely say, when the localization
MQ does not vanish: This happens if and only if the associated primes of
MQ are not empty and by the above identi�cation, if and only if there is an
associated prime P ofM , lying in Q. We have therefore proven the following
statement:

4
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Corollary 1.1.7. For a Noetherian ring R and an R-module M , we get an
alternative description of the support of M :

Supp(M) =
⋃

P∈Ass(M)

V (P )

Now we look at the minimal elements of the support of a module. With
the above corollary, it turns out that these elements are not only associated
primes but also minimal associated primes. But �rst, we have to introduce
this notion:

De�nition 1.1.8. Let R be a ring, I E R an ideal and M an R-module.

a) If R is Noetherian, then the minimal elements of Ass(M) are called
minimal (associated) primes of M . The set of all minimal primes
of M is denoted by Min(M).
Associated primes which are not minimal, are called embedded primes.

b) A prime ideal P of R is called minimal over I if there does not exist
another prime ideal Q so that I ⊆ Q ( P .

Lemma 1.1.9. Let R be a Noetherian ring, I E R an ideal and M an
R-module, then:

a) The minimal elements of Supp(M) are the minimal primes of M .

b) If M is �nitely generated, then the minimal primes of M are the prime
ideals of R which are minimal over AnnR(M).

c) The set MinR(R/I) consists of all prime ideals which are minimal over
I. In particular: Min(R) = {P ∈ Spec(R) |@Q ∈ Spec(R) : Q ( P},
so the minimal primes of R are intuitively the smallest prime ideals.

d) The map

MinR(R/I) −→ MinR/I(R/I)

P −→ P

is a bijection.

Proof. First, we use Corollary 1.1.7 to show that we only need the minimal
primes to describe the support:

Supp(M) =
⋃

P∈Min(M)

V (P )

The inclusion "⊇" is clear, since Min(M) ⊆ Ass(M). To show the other
inclusion, start with any associated prime ideal Q. We �nd a minimal prime
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P that is contained in Q. Hence, V (Q) ⊆ V (P ) and thus
⋃
Q∈Ass(M) V (Q) ⊆⋃

P∈Min(M) V (P ).
Using this identi�cation of Supp(M), the claim of part a) is an easy conse-
quence.
To show b), we use that Supp(M) = V (AnnR(M)) by Lemma A.1.3. Then
a prime P is a minimal prime of M if and only if it is minimal in Supp(M),
by a) and this is the case if and only if P is minimal over the annihilator.
Part c) is a special case of b): The annihilator of R/I is I.
The map in d) comes from the bijection {P ∈ Spec(R) |P ⊇ I} → Spec(R/I).
We combine this with the equivalence: A prime P is in MinR(R/I) if and
only if P is minimal over I by c). This is true if and only if P is minimal
over 0 in R/I. Hence, again using c), we conclude that this happens if and
only if P ∈ MinR/I(R/I). This gives the desired result. �

The above lemma can be used to explicitly �nd the minimal primes of a
given module or ring:

Example 1.1.10. Let k be a �eld andR = k[x, y]/〈xy〉. Then Mink[x,y](R) =
{〈x〉, 〈y〉}. This can be easily seen using the lemma: the ideals 〈x〉 and 〈y〉
are the only primes in k[x, y] which are minimal over 〈xy〉. Hence, by 1.1.9
c), we get the equality.

If we also apply part d) of the lemma, we obtain: MinR(R) =
{
〈x〉, 〈y〉

}
.

1.2 Reduced rings

Integral domains are rings without zero divisors and we know from com-
mutative algebra that such rings have nice properties: their total ring of
fractions is a �eld, they have exactly one associated prime, namely 0, and
geometrically they correspond, as coordinate rings, to irreducible varieties.
In order to describe varieties with more than one branch in geometry, we
have to generalize rings on the algebraic side. To obtain a more general class
of rings than that of integral domains, we do not forbid all zero divisors but
only the nilpotent elements. This will form the class of reduced rings which
is rather common but still has very useful properties: If R is a reduced ring,
the total ring of fractions Q(R) is no longer a �eld but a product of �elds.
Reduced rings have no embedded components, so Ass(R) = Min(R), the set
of zero divisors of R is the union of all minimal primes and the normalization
of R is a product of normalizations of integral domains. We shall start with
the de�nition and facts about nilpotent elements.

De�nition 1.2.1. Let R be a ring and r ∈ R. If there is a natural number
n ≥ 1 so that rn = 0, then r is called nilpotent. The set of all nilpotent
elements is called nilradical of R and we denote it by N(R).
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It is clear that any nilpotent element is a zero divisor and that
√

0 =
N(R). So the nilradical is a radical ideal in R and we can give an alternative
representation of it:

Proposition 1.2.2. For a ring R, the nilradical N(R) is the intersection of
all prime ideals.

Proof. See [AM69, Proposition 1.8] for a proof. �

Because of this representation, the nilradical commutes with localization.
This will be the reason why being reduced is a local property.

Lemma 1.2.3. Let R be a ring, N(R) its nilradical and S ⊆ R be multi-
plicatively closed, then: S−1N(R) = N(S−1R).

Proof. The nilradical is the intersection of all prime ideals by Proposition
1.2.2. Using that localization commutes with �nite intersections, we can
deduce:

S−1N(R) = S−1
⋂

P∈Spec(R)

P =
⋂

P∈Spec(R)

S−1P

If P ∩ S 6= ∅, then S−1P = S−1R, so by applying Proposition 1.2.2 again,
the intersection reduces to:⋂

P∈Spec(R),P∩S=∅

S−1P =
⋂

Q∈Spec(S−1R)

Q = N(S−1R),

since Spec(S−1R) =
{
S−1P

∣∣P ∈ Spec(R), P ∩ S = ∅
}
. �

Remark 1.2.4. Let R be a ring and N(R) its nilradical. Suppose, N(R)
is �nitely generated, then we can write N(R) = 〈s1, . . . , sm〉. Any of the
generators is nilpotent. Hence, there exist ni so that sni

i = 0 for any i =
1, . . . ,m. Set n = m ·maxi=1,...,m ni. Then any element x ∈ N(R) satis�es:
xn = 0. Thus, the nilradical itself is nilpotent:

N(R)n = 0

De�nition 1.2.5. A ring R is called reduced if it has no nilpotent elements
di�erent from 0.

One could also ask whether the nilradical N(R) of a ring R is 0. This
is clearly equivalent to R being reduced, since the nilradical is the set of all
nilpotent elements.
The reduced ring Rmay have zero divisors since not all of them are nilpotent.
Therefore, note that the total ring of fractions is in general only a ring and
not a �eld: zero divisors of R are non-units in Q(R). But at least we cannot
have nilpotent elements in the total ring of fractions:
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Lemma 1.2.6. Let R be reduced and R ⊆ S a ring extension so that S ⊆
Q(R). Then S is reduced.
In particular: Q(R) is reduced.

Proof. We show that Q(R) is reduced. Then we just use the fact that sub-
rings of reduced rings are reduced and immediately get that S is reduced.
Assume, we have an element a

b in Q(R) that is nilpotent. Then there exists
an n ≥ 1 so that: 0 = an

bn . Hence, there is a non-zero divisor u ∈ R with
0 = uan which directly implies an = 0. The ring R is reduced, hence a = 0
and a

b = 0. �

A reduced ring can always be obtained from an arbitrary ring R by
constructing the quotient: R/N(R). If r was nilpotent in R/N(R), then
there would be an n ≥ 1 so that rn ∈ N(R). But then also r ∈ N(R) since
the nilradical is a radical ideal and �nally r = 0. In fact, we only used here
that N(R) is a radical ideal, so this proof works for any ideal I of R with√
I = I and with the same argument, the converse is also true:

Remark 1.2.7. If R is a ring and I an ideal in R, then R/I is reduced if
and only if I is a radical ideal.

Before we continue listing more properties of reduced rings, we should
throw a glance at some examples.

Example 1.2.8. Through the following examples, let R be an arbitrary ring
and k be a �eld.

a) The ring k[x, y]/〈xy〉 is not an integral domain since 〈xy〉 is not a prime
ideal in k[x, y]. But it is a radical ideal:√

〈xy〉 =
√
〈x〉 ∩ 〈y〉 =

√
〈x〉 ∩

√
〈y〉 = 〈x〉 ∩ 〈y〉 = 〈xy〉

We used here that taking the radical ideal commutes with �nite inter-
sections. By Remark 1.2.7, the ring k[x, y]/〈xy〉 is reduced. Geomet-
rically, it is the coordinate ring of a variety with two branches: the
crossing of the coordinate axis in A2

k.

b) The quotient ring R[x]/〈x2〉 is clearly not reduced.

c) For an indeterminate x over R, we have that R is reduced if and only
if R[x] is reduced.

Proof. If R[x] is reduced, then we have immediately that R is re-
duced, since R is a subring of R[x]. For the converse direction let
f =

∑n
i=0 aix

i ∈ R[x] be nilpotent. Then there exists a k ≥ 1 so that
fk = 0. We show by induction that this already implies al = 0 for
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l = 0, . . . , n and hence, f = 0.
For the base case de�ne g =

∑n
i=1 aix

i, then we can write:

0 = fk = (a0 + g)k =

k∑
j=0

(
k

j

)
aj0g

k−j = ak0 +

k−1∑
j=0

(
k

j

)
aj0g

k−j

The minimal degree of a monomial of
∑k−1

j=0

(
k
j

)
aj0g

k−j is 1, so we must

have: ak0 = 0 and since R is reduced, it follows that a0 = 0.
For the case l > 0 we can assume ai = 0 for i = 1, . . . , l − 1. Thus, f
has the form: f =

∑n
i=l aix

i. Now set f ′ =
∑n−l

i=0 ai+lx
i =

∑n
i=l aix

i−l,
then we obtain:

0 = fk = (xl · f ′)k = xlk · (f ′)k

This product is 0 if and only if (f ′)k = 0 since x is not a zero divisor in
the polynomial ring. So f ′ is nilpotent and by applying the base case,
we can deduce that al = 0. Altogether: R[x] is reduced. �

d) By inductively applying part c), we can even say that a ring R is
reduced if and only if R[x1, . . . , xn] is reduced.

For an integral domain R, we have seen in Example 1.1.3 that the only
associated prime is the zero ideal. For a reduced ring, Ass(R) usually consists
of more than one element. But we can state, that there are no embedded
components:

Lemma 1.2.9. Let R be a reduced ring. Then: Min(R) = Ass(R).

Proof. The inclusion Ass(R) ⊇ Min(R) holds by de�nition of the minimal
associated primes. For the other inclusion we may assume that there exists
an associated prime Q which is not minimal. However, Q contains a minimal
prime P . Since Q = Ann(x) for some x ∈ R, we have:

xQ = 0 ⊆ P

By Q * P , and because P is prime, we get: x ∈ P ⊆ Q. But then x is in its
own annihilator and therefore x2 = 0. Since R is reduced, x is �nally 0 and
Q = R, which is a contradiction to Q being a prime ideal. �

It can always be tested locally if a given ring is reduced:

Lemma 1.2.10. For a ring R, the following are equivalent:

a) R is reduced

b) RP is reduced for all P ∈ Spec(R)
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c) Rm is reduced for all maximal ideals m of R.

Proof. We go straight ahead and prove a) implies b). Since R is reduced,
the nilradical of R is 0. Now localize at a prime ideal and use Lemma 1.2.3:

0 = N(R)P = N(RP )

Therefore, RP is reduced.
The implication b) to c) is clear, so we only have to show c) to a): For any
maximal ideal m of R, we have that 0 = N(Rm) = N(R)m, again by Lemma
1.2.3. But then N(R) is also 0. Hence, R is reduced. �

To prove some more of the promised properties from the introduction of
this section, we may assume that we have rings with �nitely many minimal
primes. This is always ful�lled if the rings we consider are Noetherian, see
Lemma 1.1.5.

Lemma 1.2.11. For a reduced ring R with �nitely many minimal primes
P1, . . . , Pr we have that:

a) RPi is a �eld.

b) Q(R/Pi) = RPi

c) The union
⋃r
i=1 Pi is the set of zero divisors of R.

d) Q(R) =
∏r
i=1Q(R/Pi)

Proof. We start with a): We know that Spec(RPi) is in one-to-one corre-
spondence to the prime ideals of R that are contained in Pi. Since this is
a minimal prime ideal, RPi has only one prime ideal: (Pi)Pi . By Lemma
1.2.10, RPi is reduced. Thus, 0 = N(RPi) = (Pi)Pi , as the nilradical is the
intersection of all prime ideals via Proposition 1.2.2. Finally, 0 being a max-
imal ideal implies that RPi is a �eld.
Applying laws of localization, one can show b):

RPi = RPi/(Pi)Pi = (R/Pi)Pi/Pi
= (R/Pi)〈0〉 = Q(R/Pi)

Where the �rst equality comes from the fact, that RPi is a �eld by a).
For the proof of c), we refer to [AM69, Proposition 4.7].
If we use part c), we get by [Stacks, Tag 02LX] that Q(R) =

∏r
i=1RPi and

by b) we obtain the desired equality. Hence, we have proven d). �

Before we move on with another theoretical property on reduced rings,
let us consider an example to illustrate the lemma:
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Example 1.2.12. Let k be a �eld and R = k[x, y]/〈xy〉. Then we know
by Example 1.2.8 and 1.1.10 that R is reduced and that the minimal primes
are 〈x〉 and 〈y〉. If we factor out these primes, we obtain: R/〈x〉 = k[y] and
R/〈y〉 = k[x]. Hence, taking Lemma 1.2.11 into account, we can conclude:

Q(R) = Q(k[x])×Q(k[y]) = k(x)× k(y)

Now let us take a look at a localization of the total ring of fractions
of a reduced ring R at a multiplicatively closed subset W of R. This will
behave well - it commutes with taking fractions. In the case that R is
an integral domain and Q(R) is a �eld, this result is immediately clear:
Q(W−1R) = Q(R) = W−1Q(R).

Lemma 1.2.13. Let R be a reduced ring with �nitely many minimal primes.
For a multiplicatively closed set W in R, we have:

Q(W−1R) = W−1Q(R)

Proof. By Lemma 1.2.11 and the fact that localization commutes with direct
sums/products, we obtain the equality:

W−1Q(R) =
∏

P∈Min(R)

W−1 (RP )

Now we treat two cases: If P ∩W = ∅, then W ⊆ R \ P and localizing RP
at W does nothing: W−1(RP ) = RP . If P ∩W 6= ∅, then we get by Lemma
1.2.11:

∅ 6= P ∩W ⊆ AnnR(Q(R/P )) ∩W = AnnR(RP ) ∩W

Hence, localizing RP at W is 0 by Lemma A.1.4. Altogether, we obtain:

W−1Q(R) =
∏

P∈Min(R)
P∩W=∅

RP

On the other hand, the ring W−1R is reduced as a localization of a reduced
ring, so there are no embedded components by Lemma 1.2.9. Using Propo-
sition 1.1.6, we know that the map, sending P to W−1P is a one-to-one
correspondence between:{

P
∣∣P ∈ Min(R), P ∩W = ∅

}
→ Min(W−1R)

Applying again Lemma 1.2.11, we get:

Q(W−1R) =
∏

P∈Min(R)
P∩W=∅

(W−1R)W−1P =
∏

P∈Min(R)
P∩W=∅

RP = W−1Q(R)

�

11



1.3 Separable �eld extensions and geometrically re-

duced algebras

This section treats a generalization of separability for algebraic �eld exten-
sions to arbitrary �eld extensions. This more common notion is needed in
2.5, when we lift the normalization of a k-algebra S to the L-algebra S⊗kL,
where L is an extension �eld of k. The success of this will heavily depend
on the ground �eld k - we need it to be perfect : any �eld extension of k is
separable.
The second notion introduced here, is that of geometrically reduced algebras:
reduced algebras which stay reduced when we extend the ground �eld. We
will see that the concept of separability and geometrically reduced algebras
coincide in the �eld case.

De�nition 1.3.1. Let k be a �eld and L/k an arbitrary �eld extension.

a) We say L is separably generated over k if there exists a transcen-
dence basis {xi | i ∈ I} of L/k so that the extension k(xi | i ∈ I) ⊆ L
is separable algebraic.

b) The �eld L is called separable over k if for any intermediary �eld
k ⊆ K ⊆ L that is a �nitely generated �eld extension of k, we have
that K/k is separably generated.

c) k is called perfect if any �eld extension of k is separable.

Example 1.3.2. Let k denote a �eld.

a) If char(k) = 0, then any extension is separable: Let L/k be an arbi-
trary �eld extension and k ⊆ K ⊆ L a �nitely generated intermediary
extension of k. Then for any transcendence basis {xi | i ∈ I} of K/k,
we obtain that k(xi | i ∈ I) ⊆ K is algebraic and since we act in char-
acteristic 0, this is even separable algebraic.

b) Let now char(k) = p 6= 0 and assume, there is an element a of k that
does not have a p-th root in k. Then f = xp − a ∈ k[x] is irreducible
by [Stacks, Tag 09HF]. In other words, p

√
a is algebraic with minimal

polynomial f . But the element is not separable algebraic over k since
f has multiple roots in its splitting �eld k( p

√
a).

Hence we see, that the extension k ⊆ k( p
√
a) is not separably generated

and thus, k( p
√
a) is not separable over k.

In the example it is shown that adjoining a p-th root is not separable. In
fact, the next lemma states, that extensions of this type are the only way to
generate non-separability:

Lemma 1.3.3. A �eld k is perfect if and only if k has characteristic 0 or k
is a �eld of characteristic p > 0 so that any element has a pth root in k.
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Proof. See [Stacks, Tag 030Z]. �

To establish a link between separable �eld extensions of k and geomet-
rically reduced algebras over k, we may consider what happens if we extend
the ground �eld of a reduced k-algebra by a separable extension.

Lemma 1.3.4. If k is a �eld, S a reduced k-algebra and L/k a separable
�eld extension, then S ⊗k L is reduced.

Proof. The lemma is part of a more general statement: [Stacks, Tag 030U].
�

The assumption on L/k being separable is essential - the lemma will fail
if we drop this:

Remark 1.3.5. Let k be a �eld of characteristic p 6= 0 and a an element of k,
not having a p-th root in k. By Example 1.3.2 b), the minimal polynomial of
p
√
a is xp−a ∈ k[x] and the extension k ⊆ k( p

√
a) is not separable. Although

k( p
√
a) is a reduced k-algebra, the algebra k( p

√
a)⊗k k( p

√
a) is not reduced:

k( p
√
a)⊗k k( p

√
a) = k( p

√
a)⊗k k[x]/〈xp − a〉

= k( p
√
a)[x]/〈xp − a〉

= k( p
√
a)[x]/〈 (x− p

√
a)p 〉

And this has for example the nilpotent element x− p
√
a.

De�nition 1.3.6. Let k be a �eld and S an k-algebra. Then S is called
geometrically reduced over k if S⊗k L is reduced for any �eld extension
L of k.

As mentioned in the introduction of this section: for �elds, this de�nition
coincides with separability:

Proposition 1.3.7. Let k be a �eld and L/k a �eld extension. Then L is
geometrically reduced over k if and only if L is separable over k.

Proof. We �rst prove the converse direction: LetK be an arbitrary extension
�eld of k. Then K is reduced and since L/k is separable, we can apply 1.3.4
and obtain: K ⊗k L is reduced. Hence, L is geometrically reduced over k.
For the other direction, we consider two cases:

� If char(k) = 0, then k is perfect by Lemma 1.3.3 and any �eld extension
of k is separable, hence L/k is.

� If char(k) = p 6= 0, we get the equivalence by [Stacks, Tag 030W]

�
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The next lemma shows that over perfect �elds, we do not have to deal
with non-geometrically reduced algebras as long as we start with a reduced
one. It also allows us to give easy examples.

Lemma 1.3.8. Let k be a perfect �eld. Then any reduced k-algebra is geo-
metrically reduced.

Proof. Let S be a reduced k-algebra and L/k a �eld extension. Then L/k is
separable since k is perfect and by Lemma 1.3.4, we obtain that S ⊗k L is
reduced. �

As a consequence, we can show that over a perfect �eld k, radical ideals
in an k-algebra stay radical when we extend the �eld.

Example 1.3.9. Let k be a perfect �eld, S an k-algebra, I E S a radical
ideal and L/k a �eld extension. Then S/I is reduced and by Lemma 1.3.8,
also S/I ⊗k L is reduced. Since �eld extensions are �at by Lemma A.2.3, we
may apply A.2.1 and obtain that

S/I ⊗k L = (S ⊗k L)/I(S ⊗k L)

is reduced. Hence, the extension of I to the L-algebra S⊗kL is also a radical
ideal.

1.4 Completion

The notion of completion can be transferred from �elds to arbitrary modules
over rings. In the �eld case, we use a topology and Cauchy sequences to de�ne
what the completion should be. Over modules, we will de�ne �ltrations -
these naturally generate a topology which is compatible with the module
structure. Instead of dealing with Cauchy sequences directly, we de�ne the
completion of a module to be a projective limit. This is again a module
and it can be understood as set of all Cauchy sequences modulo a certain
equivalence relation.
Furthermore, we will collect some basic properties of completions which are
essential for later considerations in Section 2.4 and the "lift" of invariants
to the completion of algebras in Chapter 4.

De�nition 1.4.1. Let R be a ring and M an R-module.

a) A family of ideals (In)n∈N in R forms a �ltration of R if: I0 = R,
In+1 ⊆ In and InIm ⊆ In+m.

b) A family of submodules (Mn)n∈N of M forms a �ltration of M if:
M0 = M , Mn+1 ⊆Mn and ImMn ⊆Mm+n.
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Remark 1.4.2. If a ring R has a �ltration (In)n∈N, then this induces a
topology on R: consider the In as neighbourhoods of 0, then we obtain a
topology, which is compatible with the ring structure - for details, we refer
to the introduction of [Mat80, Chapter 23].
Similarly, we obtain a topology on an R-module M by using a �ltration
(Mn)n∈N. The resulting topology onM is compatible with the module struc-
ture and the underlying ring topology on R.

The following simple example is one of the most important �ltrations
used in commutative algebra - we will later focus on �ltrations of this type.

Example 1.4.3. Let R be a ring, q an ideal of R and M an R-module.
The q-adic �ltration of R is de�ned by (qn)n∈N and the q-adic �ltration
of M is given by the submodules (qnM)n∈N. These obviously satisfy the
conditions on �ltrations.

When we are given a �ltration (Mn)n∈N on a moduleM , then the collec-
tion

{
M/Mn, i

n+1
n

}
, where in+1

n : M/Mn+1 →M/Mn are the natural maps,
is a projective system. Hence, we can consider the projective limit of the
system, which is again a module.

Proposition 1.4.4. Let R be a ring and M an R-module with �ltration
(Mn)n∈N. Then the projective limit lim←−M/Mn is the topological completion of
M : The set of all Cauchy sequences of elements ofM modulo the equivalence
relation: (xn) ∼ (yn) if for each m ∈ N there exists an m0 so that the
di�erence xn − yn ∈Mm for each n ≥ m0.

Proof. See [AK70, Proposition 1.7]. �

De�nition 1.4.5. Let R be a ring and M an R-module with �ltration
(Mn)n∈N. The module lim←−M/Mn is called completion of M and we denote

it by M̂Mn or just M̂ if it is clear which �ltration has been used.

Example 1.4.6. Let k be a �eld and x1, . . . , xn = x indeterminates over k.

a) The completion of the polynomial ring k[x] with respect to the 〈x〉-adic
�ltration is the formal power series ring k[[x]]. For details, we refer to
[Eis95, Chapter 7.1].

b) If k has a valuation, let k{x} denote the ring of power series, convergent
with respect to the valuation on k. Then the 〈x〉-adic completion of
k{x} is k[[x]].

Proof. If we factor out powers of the maximal ideal 〈x〉, we "cut" power
series at a certain degree. Hence, we have:

k{x}/〈x〉j = k[x]/〈x〉j

Taking projective limits on both sides implies: k̂{x} = k̂[x] = k[[x]],
by a). �
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c) Now we compute the completion of the localized polynomial ring k[x]〈x〉.
The natural embedding k[x]→ k[[x]] maps the set k[x]\〈x〉 into k[[x]]∗.
Hence, we get a map ϕ : k[x]〈x〉 → k[[x]] by the universal property of

localization and ϕ satis�es: ϕ(〈x〉j〈x〉) ⊆ 〈x〉
j . This induces the map

ϕ : k[x]〈x〉/〈x〉
j
〈x〉 −→ k[[〈x〉]]/〈x〉j

a/b 7−→ a/b

� ϕ is injective: Let ab ∈ k[x]〈x〉 and assume a
b ∈ 〈x〉

j in k[[x]]. Then

a = b· ab ∈ 〈x〉
j . Since a is in k[x], we get that ab ∈ 〈x〉

j
〈x〉 E k[x]〈x〉.

� ϕ is surjective: For f ∈ k[[x]]/〈x〉j , we can choose a representative
f ∈ k[[x]] which has degree less than j. So f is a polynomial and
therefore an element in k[x]〈x〉. The class of f in k[x]〈x〉/〈x〉

j
〈x〉

maps to the class of f in k[[x]]/〈x〉j .

Altogether, we get:

k[x]〈x〉/〈x〉
j
〈x〉 = k[[x]]/〈x〉j = k[x]/〈x〉j

and thus: k̂[x]〈x〉 = k[[x]].

So we have three di�erent rings but their completions coincide. We will use
this fact later in Chapter 5 to justify why we can compute certain invariants
over localized polynomial rings instead of convergent power series rings.

We will now focus on q-adic �ltrations/completions and start collecting
useful facts about these. The �rst remark concerns the lift of ideals under
ring homomorphisms and the completion with respect to these lifted ideals.

Remark 1.4.7. If ϕ : R → S is a ring homomorphism and q an ideal of
R, then we can extend q to an ideal of S by setting u = ϕ(q)S = qe. For
a precise de�nition of the extension and contraction of ideals, we refer to
A.1.1. Any S-module M is also an R-module and we have the equality:

qnM = ϕ(qn)M = ϕ(q)nM = unM

Hence, we get: M/qnM = M/unM and therefore the q-adic completion of
M considered as R-module and the u-adic completion of M as S-module
coincide:

M̂ q = lim←−M/qnM = lim←−M/unM = M̂u

Sometimes, di�erent ideal �ltrations induce the same topology and thus,
have the same completion.
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Lemma 1.4.8. Let R be a ring and q, p ideals of R. Suppose there exist
natural numbers c, d > 0 so that: qc ⊆ p and pd ⊆ q. Then for any R-module
M , we have that q-adic completion coincides with p-adic completion:

M̂ q = M̂p

Proof. See [Stacks, Tag 0319] �

Under suitable assumptions, completion is exact and it will turn out that
it is even �at. This has an enormous in�uence on later results.

Proposition 1.4.9. Let R be a Noetherian ring and q an ideal in R. The
functor M 7→ M̂ , which maps a �nitely generated R-module to its q-adic
completion is exact.

Proof. This is [Mat80, Theorem 54]. �

Corollary 1.4.10. Let R be a Noetherian ring, q an ideal of R and M a
�nitely generated R-module. If N is a submodule of M , then we have for the
q-adic completion:

M̂/N ∼= M̂/N̂

Proof. The sequence 0 → N → M → M/N → 0 is an exact sequence of
�nitely generated R-modules. Hence, we may apply Proposition 1.4.9 and

obtain that the sequence 0→ N̂ → M̂ → M̂/N → 0 is also exact. The claim
follows then by the homomorphism theorem. �

The q-adic completion of a ring R is, by de�nition, the projective limit of
R/qn. Hence, we can consider R̂ as submodule of

∏
n∈NR/q

n and similarly

for an R-module M : M̂ is a submodule of
∏
n∈NM/qnM . We therefore get

a canonical map M ⊗R R̂ → M̂ . The next theorem states, when this is
actually an isomorphism:

Theorem 1.4.11. For a Noetherian ring R, an ideal q of R and a �nitely
generated R-module M , we have an isomorphism:

M ⊗R R̂ ∼= M̂ ,

where ̂ denotes the q-adic completion.

Proof. See [Mat80, Theorem 55]. �

Corollary 1.4.12. For a Noetherian ring R, an ideal q and �nitely generated
R-modules M1, . . . ,Mn, the q-adic completion commutes with the direct sum
of the Mi: (

n⊕
i=1

Mi

)̂
∼=

n⊕
i=1

M̂i

17

http://stacks.math.columbia.edu/tag/0319


Proof. The direct sum of the Mi is �nitely generated, hence we may apply
Theorem 1.4.11 and use that the tensor product commutes with direct sums.

�

Corollary 1.4.13. For a Noetherian ring R and an ideal q of R we have
that the q-adic completion R̂ is �at over R.

Proof. This is a direct consequence of Proposition 1.4.9 and Theorem 1.4.11.
�

The next Proposition shows that ideals behave well with respect to com-
pletion. This allows us to give some examples.

Proposition 1.4.14. Let R be a Noetherian ring, I and q ideals of R and
M a �nitely generated R-module. If R and M are �ltered with a q-adic
�ltration, then:

a) I M̂ = (̂IM) = Î M̂

b) M̂/I M̂ = ̂(M/IM)

In particular: M/qnM = M̂/qnM̂ = M̂/q̂nM̂ .

Proof. This is part of [AK70, Proposition 1.19]. �

Example 1.4.15. Let k denote a �eld and x1, . . . , xn = x indeterminates
over k. Set R = k[x]/I, then R̂ = k[[x]]/Ik[[x]] by Proposition 1.4.14 and
Example 1.4.6. We see, that the completion of a �nitely generated k-algebra
is a formal analytic algebra over k.

If we consider the q-adic completion of a module M as submodule of
the product of the M/qnM , like above, we always have a canonical map
M → M̂ with kernel

⋂
qnM . Intuitively, the module should embed into its

completion - in this case, the induced topology on M is called Hausdor�.
We can show that for �nitely generated modules over local Noetherian rings,
the topology induced by the maximal ideal is Hausdor�.

Theorem 1.4.16. Let R be a Noetherian ring, q E R an ideal and M a
�nitely generated R-module. The kernel

⋂
qnM of the canonical map M →

M̂ consists of all elements of M that get annihilated by some element of
1 + q.

Proof. See [AM69, Theorem 10.17]. �

Corollary 1.4.17. Let R be a local Noetherian ring with maximal ideal m
and M a �nitely generated R-module. Then the topology induced by m on M
is Hausdor�:

⋂
mnM = 0. In particular: M → M̂ is injective.
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Proof. By Theorem 1.4.16, we know that
⋂
mnM consists of all elements

annihilated by some element from 1 + m. But since R is local, the elements
in 1 + m are all units and these only annihilate 0. Hence,

⋂
mnM = 0. �

When completing a ring, we may ask which properties of the rings survive
the completion. As one expects, the Noetherian property seems to persist
anything:

Proposition 1.4.18. If R is a Noetherian ring and q E R an ideal, then
R̂ = lim←−R/q

n is also Noetherian.

Proof. This is [AK70, Proposition 1.22]. �

The property of being local also transfers to the completion:

Proposition 1.4.19. Let R be a ring and q an ideal of R. Then the map

{m E R |m maximal, q ⊆ m} −→
{
n E R̂

∣∣ n maximal}
m 7−→ m̂

is a bijection. In particular, if R is local with maximal ideal m, then R̂ is
local with maximal ideal m̂.

Proof. See [AK70, Proposition 1.24]. �

As an application, we can deduce that the dimension does not change if
we pass to the completion:

Proposition 1.4.20. Let R be a local ring and let q be an ideal of R. Then
we have for the q-adic completion: dim R̂ = dimR.

Proof. Since the map R → R̂ is a �at local homomorphism by Proposition
1.4.19 and Corollary 1.4.13, we get by Proposition A.2.5: dim R̂ = dimR +
dim R̂/mR̂. But since mR̂ is the maximal ideal of R̂, R̂/mR̂ is a �eld and
therefore dim R̂/mR̂ = 0. �
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2. Normalization

The following chapter mainly treats the integral closure of ring extensions
and in particular the normalization of a ring and its behaviour with respect
to completion and �eld extension. Starting with basic de�nitions and prop-
erties around integrality in 2.1, the chapter continues with giving criteria,
when the normalization is actually �nite - see 2.2 . In Section 2.3, normal
rings are introduced and it is shown that under suitable assumptions, the
normalization is actually normal. The last two sections, 2.4 and 2.5 concern
the commutativity between normalization and completion, respectively �eld
extension.

2.1 The integral closure and integrally closed rings

Like algebraic elements in a �eld extension, integral elements are elements
in a ring extension R ⊆ S, satisfying certain polynomial relations. The set
of all these elements is called integral closure of R in S and is, in fact, a
new over ring of R. If S is the total ring fractions, the integral closure of R
in S is also called normalization of R. A goal of this section is to state the
result that the normalization of a reduced ring factors into normalizations
of integral domains - this is useful when computing normalizations, as one
can see in Example 2.1.16. In the subsequent section, 2.2, we will state some
results, when the normalization is actually a �nitely generated module.

De�nition 2.1.1. Let R ⊆ S be a ring extension and α ∈ S.

a) The element α is called integral over R if there is a monic polynomial
f ∈ R[x] so that α is a zero of f .

b) The ring S is called integral over R if any element of S is integral
over R.

c) The integral closure of R in S is the set of all elements of S that
are integral over R, denoted by: IntS(R).

One major di�erence between algebraic and integral elements is, that in
the case of a ring extension, we cannot always guarantee to have a monic
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polynomial. The following example shows, that it is possible for an element
to satisfy a polynomial relation without being integral. For algebraic ele-
ments, this cannot happen: if an element is the zero of a polynomial over a
�eld, then we can always multiply by a unit to make the polynomial monic.

Example 2.1.2. Let R be a unique factorization domain (UFD) and Q(R)
its �eld of fractions. Then:

IntQ(R)(R) = R

A proof is given in [HS06, Proposition 2.1.5]. As an immediate consequence,
we obtain that the fraction 1

2 ∈ Q is not integral over Z although it is a zero
of the polynomial 2x− 1 ∈ Z[x].

The following lemma describes the relation between �nitely generated
R-modules and integral elements.

Lemma 2.1.3. If R ⊆ S is a ring extension and x1, . . . , xn ∈ S, then the
following statements are equivalent:

a) The elements x1, . . . , xn are integral over R.

b) The module R[x1, . . . , xn] is �nitely generated over R.

c) There is a �nitely generated R-module M ⊆ S that is also a faithful
R[x1, . . . , xn]-module.

Proof. See [HS06, Lemma 2.1.9] �

With the help of this, one can easily show that the integral closure of a
ring R in a ring S is again a ring. Equivalently one could say: the sum and
the product of integral elements are again integral.

Corollary 2.1.4. Let R ⊆ S be a ring extension. Then IntS(R) is also a
ring.

Proof. Let x, y ∈ IntS(R), then by Lemma 2.1.3 we get that R[x, y] is a
�nitely generated R-module. The elements x+ y, xy and −x are in R[x, y].
So R[x, y] is a faithful module over R[x + y], R[xy] and R[−x]. Applying
Lemma 2.1.3 with M = R[x, y], we obtain that x+ y, xy and −x are again
integral over R. �

A further corollary of the lemma above shows that integral extensions
are in particular transitive.

Corollary 2.1.5. Let R ⊆ S ⊆ T be an extension of rings. Then T is
integral over R if and only if T is integral over S and S is integral over R.

Proof. This is [HS06, Corollary 2.1.12] �
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Now assume, we have an integral ring extension R ⊆ S and we extend
scalars by an R-algebra T . We get the following diagram:

S S ⊗R T

R R⊗R T = T

int

The next lemma answers the question if the T -algebra S ⊗R T is integral
over T .

Lemma 2.1.6. If R ⊆ S is a ring extension and S is integral over R, then
for any R-algebra T , we have: S ⊗R T is integral over T = R⊗R T .

Proof. Let x ⊗ t ∈ S ⊗R T , then x ∈ S is integral over R. Hence, we get a
relation:

0 = xn + an−1x
n−1 + · · ·+ a0,

with ai ∈ R. Now we tensorize by tn and make use of bilinearity and
multiplication on S ⊗R T :

0 = (xn + an−1x
n−1 + · · ·+ a0)⊗ tn

= xn ⊗ tn + an−1x
n−1 ⊗ tn + · · ·+ a0 ⊗ tn

= (x⊗ t)n + (an−1 ⊗ t)(x⊗ t)n−1 + · · ·+ a0 ⊗ tn

We constructed a monic relation for x⊗ t with coe�cients in R ⊗R T = T ,
so x⊗ t is integral over T . For an arbitrary element y =

∑
xi⊗ ti in S⊗R T ,

we get that any summand is integral over T . Since the integral closure
IntS⊗RT (T ) is a ring by Corollary 2.1.4, we obtain that y is integral over
T . �

If R ⊆ S is a ring extension, then one would expect that all elements of
S which are integral over IntS(R) lie already in the integral closure. In fact,
this is true:

Lemma 2.1.7. Let R ⊆ S be a ring extension. Then: IntS(IntS(R)) =
IntS(R)

Proof. The inclusion "⊇" is clear. For the converse inclusion note that
IntS(IntS(R)) is integral over IntS(R), which is itself integral over R. Hence
IntS(IntS(R)) is integral over R by 2.1.5 and thus a subset of IntS(R). �

The integral closure is also compatible with localization:

Lemma 2.1.8. For a ring extension R ⊆ S and a multiplicatively closed set
W ⊆ R, we have:

W−1 IntS(R) = IntW−1S(W−1R)
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Proof. Let x
w be from the left hand side, where x ∈ S is integral over R and

w ∈W . The element x satis�es a polynomial relation

xn + rn−1x
n−1 + · · ·+ r1x+ r0 = 0

with rj ∈ R. Multiplying with 1
wn , we obtain another polynomial relation

with coe�cients in W−1R:( x
w

)n
+
rn−1

w
·
( x
w

)n−1
+ · · ·+ r1

wn−1
·
( x
w

)
+
r0

wn
= 0

This shows that x
w ∈W

−1S is integral over W−1R.

For the converse direction, let x
w ∈ IntW−1S(W−1R). Then x

w is integral
over W−1R, so it satis�es a relation( x

w

)n
+
rn−1

wn−1
·
( x
w

)n−1
+ · · ·+ r1

w1
·
( x
w

)
+
r0

w0
= 0

with rj ∈ R, wj ∈W . Set w̃ =
∏n−1
j=0 wj ∈W and multiply the relation with

wn and w̃n:

(w̃x)n +
rn−1ww̃

wn−1
· (w̃x)n−1 + · · ·+ r1w

n−1w̃n−1

w1
· (w̃x) +

r0w
nw̃n

w0
= 0

This has coe�cients in R since wn−1|w̃. So we get that w̃x ∈ S is integral
over R and thus:

x

w
=
w̃x

w̃w
∈W−1 IntS(R)

�

If we start with an integral extension of integral domains R ⊆ S, then
we can relate the maximal primes of S to the maximal primes of R:

Proposition 2.1.9. Let R ⊆ S be an integral extension of integral domains.
If Q is a prime ideal of S, then Q is a maximal ideal of S if and only if
Q ∩R is a maximal ideal of R.

Proof. See [Eis95, Corollary 4.17]. �

The following result is called Incomparability. In fact, this statement
is one of the four most basic theorems that treat the behaviour of prime
ideals under integral extensions. The other results are called Going-Up,
Going-Down and Lying-Over and we refer to [HS06, Section 2.2] for the
statements.

Theorem 2.1.10. Let R ⊆ S be an integral ring extension and P ⊆ Q prime
ideals of S. If P ∩R = Q ∩R, then P = Q.
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Proof. See [HS06, Theorem 2.2.3]. �

We will now consider normalizations: integral closures of rings in their
total ring of fractions. As we have already seen in Example 2.1.2, there are
rings whose integral elements in the total ring of fractions lie already in the
ring. Such rings are called integrally closed.

De�nition 2.1.11. Let R be a reduced ring, then its total ring of fractions
Q(R) is an over ring. The integral closure of R in Q(R) is called integral
closure of R or normalization of R and it is denoted by: R. The ring R
is said to be integrally closed if: R = R.

In fact, we have already seen integrally closed rings:

Remark 2.1.12. LetR be a UFD, then Example 2.1.2 shows that IntQ(R)(R) =
R. This means R is integrally closed.

Proposition 2.1.13. Let R ⊆ S be an integral ring extension, where R is
reduced and S ⊆ Q(R). Then S is integrally closed if and only if S = R.

Proof. First of all, S is also a reduced ring by Lemma 1.2.6, so the claim
above makes sense without the assumption on S being reduced.
If S is integrally closed, we have to show the set equality. Let x ∈ S, then x
is integral over R and x ∈ Q(R). Thus, x lies in IntQ(R)(R) = R. We get a
chain of inclusions:

R ⊆ S ⊆ R ⊆ Q(R) ⊆ Q(S)

and since we know that R is integral over R, we get by Corollary 2.1.5 that
R is integral over S. Hence, R ⊆ IntQ(S)(S) = S.
For the converse direction, we immediately get by Lemma 2.1.7 that the
normalization of R and thus S, is integrally closed. �

For the next proposition we need the fact, that the normalization of an
integral domain R is again an integral domain. This is clearly true, since R
is a subring of the �eld Q(R).

Proposition 2.1.14. Let R be an integral domain and let J(R) and J(R)
denote the Jacobson radicals of R and R. Then the natural inclusion R→ R
maps J(R) into J(R).

Proof. Let n be a maximal ideal of R. Since R ⊆ R is an integral extension of
integral domains, we may apply Proposition 2.1.9 and obtain that nc = n∩R
is a maximal ideal of R. Therefore, nc ⊇ J(R) and by Remark A.1.2, we
have:

J(R)R = J(R)e ⊆ nce ⊆ n

Hence, J(R)R ⊆ J(R) �

24



In Lemma 1.2.11 we saw, that for a reduced ring R, the total ring of
fractions is a product of �elds. We obtain a similar statement for the nor-
malization: R can be decomposed into a product of normalizations R/P ,
where P runs through the minimal primes of R. Geometrically this means,
that the normalization of a reduced variety is the product of the normaliza-
tions of the branches.

Proposition 2.1.15. Let R be a reduced ring and P1, . . . , Pr its minimal
primes. Then:

R = R/P1 × · · · ×R/Pr,

where R/Pi is the normalization of R/Pi.

Proof. A proof can be found in [HS06, Corollary 2.1.13]. �

Example 2.1.16. Let k be a �eld.

a) Set R = k[x, y]/〈xy〉. We want to compute the normalization of R:
In Example 1.2.12, we saw that R modulo its two minimal primes gives
us the polynomial rings: k[y] and k[x]. These are UFDs, hence they are
integrally closed by Remark 2.1.12. Now we apply Proposition 2.1.15
and get:

R = k[y]× k[x]

b) Let now R denote the reduced ring k[x, y]/〈y4 − x6〉. Then we can
decompose the polynomial into two irreducible factors: y4−x6 = (y2−
x3) · (y2 +x3). Hence, the minimal primes are 〈y2 − x3〉 and 〈y2 + x3〉.
By Proposition 2.1.15, we can deduce:

R = k[x, y]/〈y2 − x3〉 × k[x, y]/〈y2 + x3〉

Let us �rst consider the normalization of k[x, y]/〈y2 − x3〉. Therefore,
let ϕ be the map:

k[x, y] −→ k[t2, t3] ⊆ k[t]

x 7−→ t2

y 7−→ t3

Then ϕ is surjective and Ker(ϕ) = 〈y2 − x3〉. We get an isomorphism
k[x, y]/〈y2 − x3〉 ∼= k[t2, t3]. Furthermore t is a root of the monic
polynomial T 2−t2 ∈ k[t2, t3][T ] and hence, integral over k[t2, t3]. Since
sums and products of integral elements are again integral by Lemma
2.1.3, we get that k[t] is integral over k[t2, t3]. The polynomial ring k[t]
is a UFD and therefore integrally closed, see Remark 2.1.12. We can
also deduce that Q(k[t]) = k(t) = Q(k[t2, t3]) and altogether we are in
the situation of Proposition 2.1.13. Hence, k[t] is the normalization of
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k[t2, t3].
A similar argumentation shows that k[x, y]/〈y2 + x3〉 ∼= k[z2, z3] and
the normalization of k[z2, z3] is k[z].
Finally, we obtain:

R ∼= k[t]× k[z]

Geometrically, the curve y4−x6 consists of two cusps: y2−x3 and y2 +
x3. The normalization, that we were able to construct with Proposition
2.1.15, is the product of two lines. So the normalization of the curve
is the product of the normalization of its branches.

Another useful property is a consequence of the facts, that the ring of to-
tal fractions and the integral closure commute with localization if we consider
a reduced ring.

Proposition 2.1.17. Let R be a reduced ring with �nitely many minimal
primes and W a multiplicatively closed subset of R. Then we have:

W−1R = W−1R

Proof. This is an application of Lemma 1.2.13 and Lemma 2.1.8:

W−1R = IntQ(W−1R)(W
−1R)

= IntW−1Q(R)(W
−1R)

= W−1 IntQ(R)(R)

= W−1R �

2.2 Finitely generated normalizations

The main goal of this section is to show, that the normalization of an algebra,
which is reduced essentially of �nite type, is again an algebra of the same
kind. We �rst handle �nitely generated algebras over �elds. Therefore, we
will use a powerful theorem, proven by Emmy Noether, which gives us a �rst
hint, when an algebra is normalization-�nite. After that we "localize" our
results.

De�nition 2.2.1. We call a reduced ring R normalization-�nite if R is
a �nitely generated module over R.

Example 2.2.2. Let k be a �eld and R = k[x, y]/〈x, y〉. Then we already
know by Example 2.1.16, that the normalization of R is k[y]× k[x] and the
minimal primes are 〈x〉 and 〈y〉. The polynomial ring k[y] is generated by
1 as R/〈x〉-module, hence it also generated by 1 as R-module. Similarly, 1
generates k[x] as R-module and thus: k[y] × k[x] is generated by (1, 0) and
(0, 1) as R-module. Altogether: R is normalization-�nite.
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To reach our goal we start with �nitely generated algebras over �elds and
the aforementioned theorem of Emmy Noether:

Theorem 2.2.3. Let k be a �eld and R a �nitely generated k-algebra which
is a domain. If L/Q(R) is a �nite �eld extension, then IntL(R) is a �nitely
generated R-module.
In particular: R is normalization-�nite.

Proof. See [Eis95, Proposition 4.14]. �

Before we generalize the result to reduced algebras, we mention a short
fact that we will use a few times in our considerations.

Remark 2.2.4. Let k be a �eld, R a �nitely generated k-algebra and S a
ring, which is a �nitely generated R-module, then S is a �nitely generated
k-algebra.

Proof. We get generators of S as an R-module: s1, . . . , sl ∈ S, hence the
map R[y] = R[y1, . . . , yl] → S, which sends yi to si, is surjective. We also
have an surjective map k[x] → R since R is �nitely generated as k-algebra.
If we tensor this with k[y] over k, we obtain a sequence of surjective maps:

k[x, y] = k[x]⊗k k[y] R⊗k k[y] = R[y] S

Hence, also S is a �nitely generated k-algebra. �

Corollary 2.2.5. Let k be a �eld and R a reduced �nitely generated k-
algebra. Then R is a reduced �nitely generated k-algebra and R is normalization-
�nite.

Proof. The ring R is Noetherian, hence the set Min(R) is �nite by Lemma
1.1.5. We can therefore apply Proposition 2.1.15 and obtain:

R =
∏

P∈Min(R)

R/P

The integral domains R/P are �nitely generated R-modules and hence, they
are also �nitely generated k-algebras by Remark 2.2.4. Applying Theorem
2.2.3, we get that R/P are �nitely generated as R/P -modules. But then the
R/P are also �nitely generated as R-modules and their product R also has
�nitely many generators over R. Finally, Remark 2.2.4 and Lemma 1.2.6
imply that R is a reduced �nitely generated k-algebra. �

Now we pass to localizations of �nitely generated algebras and show that
the result is still valid:

Proposition 2.2.6. If k is a �eld and S is reduced essentially of �nite
type over k. Then S is reduced essentially of �nite type over k and S is
normalization-�nite.
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Proof. We can write S = W−1R, where R is a �nitely generated k-algebra
and W a multiplicatively closed set in R. Since S is reduced and the nilrad-
ical commutes with localization by Lemma 1.2.3, we can deduce:

S = S/N(S) = W−1R/W−1N(R) = W−1(R/N(R))

The ring R/N(R) is still a �nitely generated k-algebra, hence we may assume
that R is reduced.
By Corollary 2.2.5, R is a �nitely generated k-algebra and R is normalization-
�nite. If we apply Proposition 2.1.17, then we get:

S = W−1R = W−1R

Thus, S is a localization of a �nitely generated k-algebra and therefore es-
sentially of �nite type over k and it is reduced by Lemma 1.2.6.
Since R is a �nitely generated R-module, also S = W−1R is �nitely gener-
ated over W−1R = S. �

We did not mention yet, if the normalization of a Noetherian ring is again
Noetherian. In the case that our ring is normalization-�nite, this is actually
true:

Lemma 2.2.7. If the reduced Noetherian ring R is normalization-�nite, then
R is a Noetherian ring.

Proof. The normalization is �nitely generated as an R-module. Hence, R
is Noetherian as module over R. But any chain of ideals in R is a chain of
R-submodules and such sequences stabilize. �

Starting with a normalization-�nite local ring, we may lose locality when
we pass to the normalization. But we cannot have in�nitely many maximal
prime ideals occurring:

Proposition 2.2.8. Let R be a reduced local normalization-�nite ring with
�nitely many minimal primes. Then the normalization R is semi-local.

Proof. First, we may assume that R is an integral domain and we denote by
m the maximal ideal of R. Since R is a �nitely generated R-module, R/mR
is a �nitely generated vector space over the �eld R/m. Hence, R/mR is
�nite dimensional and therefore Artinian. By Proposition A.3.1, we get that
R/mR has �nitely many maximal ideals. The ring R is an integral domain,
so we get that mR ⊆ J(R) by Proposition 2.1.14. Hence, the maximal ideals
of R and the maximal ideals of R/mR are in one-to-one correspondence and
therefore, R has �nitely many maximal ideals.
Now let R be reduced with minimal primes P1, . . . , Pr. Then we know from
Proposition 2.1.15:

R =

r∏
i=1

R/Pi
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The �rst considered case applies to the local rings R/Pi and therefore any
R/Pi is semi-local. This implies, that R is semi-local, since any maximal
ideal n of R is of the form:

n = R/P1 × · · · ×mi × · · · ×R/Pr,

where mi is a maximal ideal of R/Pj . �

As a last result in this section, we connect normalization-�nite local rings
with completion: When we consider modules over the semi-local normaliza-
tion, we may form the completion with respect to the Jacobson radical. The
next result states that this is the same as considering the module over the
ground ring and forming the completion with respect to the maximal ideal.

Proposition 2.2.9. Let R be a reduced local normalization-�nite Noetherian
ring with maximal ideal m. Then:

a) Under the natural map R→ R, m maps into J(R)

b)
√
me = J(R)

c) There exists a t ∈ N, t > 0 so that J(R)t ⊆ me

d) For any R-module, the J(R)-adic completion and the m-adic completion
coincide.

Proof. The natural map R→ R factors:

R R =
∏

P∈Min(R)

R/P

∏
P∈Min(R)

R/P

∆

The map ∆ sends r to (r, . . . , r) and is injective:

Ker(∆) =
⋂

P∈Min(R)

P = N(R) = 0

Hence, the ideal m maps into the ideal
∏

P∈Min(R)

m/P . Since the m/P are the

maximal ideals of R/P , we obtain that m/P = J(R/P ) and

m ↪→
∏

P∈Min(R)

J(R/P )
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By Proposition 2.1.14, we obtain: J(R/P ) ↪→ J(R/P ) and if we use Propo-
sition 2.1.15 and inductively apply Lemma A.3.2, we get:

m ↪→
∏

P∈Min(R)

J(R/P ) = J

 ∏
P∈Min(R)

R/P

 = J(R)

This proves part a).

Now that we have proven that m maps into J(R), we get that me is
contained in J(R). Since the Jacobson radical is a intersection of prime
ideals, we can deduce:

√
me ⊆

√
J(R) = J(R)

From commutative algebra, we know that we can write:

√
me =

⋂
P∈Spec(R)
P⊇me

P

Now let P be such a prime ideal of R, containing me. Then P c ⊇ mec ⊇ m
by Lemma A.1.2. Since P c is prime in R and m maximal, we have: P c = m.
There exists a maximal ideal n of R that contains P . Since n also contains
me, we get with the same argument: P c = nc. Hence by Incomparability,
Theorem 2.1.10, we can deduce that P = n. Therefore, we obtain:⋂

P∈Spec(R)
P⊇me

P ⊇
⋂

n maximal in R

n = J(R)

Thus, we have proven part b).

To prove part c), we �rst note that R is Noetherian by 2.2.7. Then R/me

is also Noetherian and by Remark 1.2.4, the ideal

N(R/me) =
√
me/me = J(R)/me

is nilpotent. This means, there exists an t ∈ N, t > 0 so that

(J(R)t + me)/me = 0

Hence, J(R)t ⊆ me.

Part d) is a direct consequence of what we have shown so far, Lemma
1.4.8 and Remark 1.4.7. �
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2.3 Normal rings

Normal rings are a generalization of integrally closed rings. In fact, we will
see that the two de�nitions coincide under suitable assumptions and we will
give a criterion, when the normalization is actually a normal ring. We will
need the notion of normal rings in Section 2.5 to lift the normalization of an
algebra when extending the ground �eld.

De�nition 2.3.1. An arbitrary ring R is said to be normal if RP is an
integrally closed integral domain for every prime ideal P ∈ SpecR.

We can immediately deduce from the de�nition that a normal ring is
reduced. Locally, it is an integral domain, so we can apply Lemma 1.2.10
and obtain that the ring is reduced.
As mentioned before, normal rings are a generalization of integrally closed
rings:

Lemma 2.3.2. A normal ring is reduced and integrally closed.

Proof. This is [Stacks, Tag 034M]. �

If we know that we deal with a reduced ring, having �nitely many minimal
prime ideals, then the two notions are equivalent:

Proposition 2.3.3. Let R be a reduced ring with �nitely many minimal
primes. Then R is normal if and only if R is integrally closed.

Proof. If R is normal, then this is Lemma 2.3.2.

For the converse implication, assume that R is integrally closed and let
P ∈ Spec(R). Then, we know that the total ring of fractions commutes with
localization by Lemma 1.2.13:

RP = IntQ(R)(R)P = IntQ(R)P (RP ) = IntQ(RP )(RP )

So RP is integrally closed and we just have to show that it is also an integral
domain. The ring RP is reduced by Lemma 1.2.10 and has �nitely many
minimal primes by the ideal correspondence between RP and R. Hence, we
can apply Proposition 2.1.15 and Lemma 1.2.11 to get:

RP = RP =
∏

A∈Min(RP )

RP /A and Q(RP ) =
∏

A∈Min(RP )

Q(RP /A)

Since RP is local, it cannot be a product of rings, unless r = 1, by Lemma
A.3.3. Thus, Q(RP ) = Q(RP /Ai) is a �eld and RP an integral domain. �
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Since by Lemma 1.1.5, any Noetherian ring has �nitely many associated
primes, we obtain that any Noetherian reduced ring is normal if and only if
it is integrally closed.
The last result of this section is an application of Proposition 2.3.3: we can
decide, if the normalization of a ring is actually normal.

Proposition 2.3.4. If R is a reduced ring with Noetherian normalization,
then R is a normal ring.
In particular: if R is reduced Noetherian and normalization-�nite, then R is
normal.

Proof. By Proposition 2.3.3, we need to show that R is integrally closed,
has �nitely many minimal prime ideals and is reduced. Since R ⊆ Q(R), we
can apply Lemma 1.2.6 and obtain that R is reduced. By assumption, R is
Noetherian, so Min(R) is �nite by Lemma 1.1.5. Finally, lemma 2.1.7 states
that R is integrally closed.
For the "in particular part", apply Lemma 2.2.7 to R. �

Example 2.3.5. Let k be a �eld and R = k[x, y]/〈xy〉. Then we have seen
before that R is reduced and from Example 2.2.2, we can deduce that R is
normalization-�nite with: R = k[y]× k[x]. Hence, we can apply Proposition
2.3.4 and obtain that R is normal.

2.4 Normalization and completion - Excellent rings

The goal of this section is to give a short introduction to a class of rings
whose completion commutes with normalization: so called excellent rings.
Although the de�nition of these seems to be restricting, we will see that
they are rather general and that most rings arising from algebraic geometry
are indeed excellent. This is due to the facts, that �elds are excellent and
that excellent rings are closed under taking �nitely generated algebras and
localization.
The main result of the section will be of particular importance when we lift
invariants to the completion of a ring in Chapter 4.

We start with the �rst condition on excellent rings. This concerns a
particular subset of the spectrum of a ring: the regular locus. Recall, that
the spectrum is a topological space, equipped with the Zariski Topology.

De�nition 2.4.1. Let R be a Noetherian ring and X = Spec(R).

a) The regular locus of R is the set:

Reg(X) =
{
P ∈ X

∣∣RP is regular
}

b) R is J-0, if Reg(X) contains a non-empty open subset of X.
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c) R is J-1, if Reg(X) is open in X.

d) R is J-2, if one of the equivalent conditions of Theorem 2.4.2 is satis�ed.

Theorem 2.4.2. Let R be a Noetherian ring. Then the following are equiv-
alent:

a) Any �nitely generated R-algebra is J-1.

b) Any R-algebra which is �nitely generated as R-module is J-1.

c) Let P ∈ Spec(R) and K a �nite radical �eld extension of κ(P ). Then
there exists an R-algebra S, which is �nitely generated as R-module so
that:

� R/P ⊆ S ⊆ K
� S is J-0

� Q(S) = K

Proof. See [Mat80, Theorem 73]. �

Condition c) of Theorem 2.4.2 can be localized since for a multiplicatively
closed subset W of R and a prime ideal P of R with W ∩ P = ∅, we have
that κ(W−1P ) = κ(P ). Hence, we obtain as a consequence, that J-2 rings
are closed under localization. We also get that �nitely generated algebras
over J-2 rings are again J-2 by condition a) of Theorem 2.4.2.

Remark 2.4.3. Let R be a J-2 ring, W a multiplicatively closed subset of
R and S a �nitely generated R-algebra. Then W−1R is J-2 and S is J-2.

In order to formulate the second condition on excellent rings, we have
to take a look at regular algebras over �elds, which stay regular, when we
extend the ground �eld:

De�nition 2.4.4. Let R and S be Noetherian rings.

a) If R contains a �eld k, then R is called geometrically regular if
R⊗k L is regular for any �nitely generated �eld extension L/k.

b) A ring homomorphism R → S is said to be regular if it is �at and
for any P ∈ Spec(R) the �bre S ⊗R κ(P ) is geometrically regular over
κ(P ).

c) R is called a G-ring if for any prime ideal P of R, the map

RP → R̂P

is regular. Here, the completion is built with respect to the PP -adic
topology on RP .
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Like for the J-2 condition we want, that G-rings are closed under local-
ization and passing to �nitely generated algebras. Therefore we will need
the following theorem:

Theorem 2.4.5. Let R be a G-ring and S an R-algebra essentially of �nite
type. Then S is a G-ring.

Proof. This is [Stacks, Tag 07PV] �

The last condition demands, that maximal prime chains in a ring always
have same length:

De�nition 2.4.6. Let R be any ring.

a) Then R is called catenary, if for all pair of prime ideals Q ⊆ P , the
height of P/Q is �nite and equal to the length of any maximal prime
chain between Q and P .

b) If R is Noetherian and any �nitely generated R-algebra is catenary,
then R is called universally catenary.

It is immediately clear from the de�nition, that universally catenary rings
are closed under passing to a �nitely generated algebra. This also works for
localization:

Lemma 2.4.7. Any localization of a universally catenary ring is universally
catenary.

Proof. [Stacks, Tag 00NJ] �

Corollary 2.4.8. If R is an universally catenary ring and S an R-algebra,
essentially of �nite type, then S is universally catenary.

Proof. Combine Lemma 2.4.7 and De�nition 2.4.6. �

Proposition 2.4.9. Any �eld is universally catenary.

Proof. See [Eis95, Corollary 13.6]. �

Now we can state the de�nition of excellent rings:

De�nition 2.4.10. A ring R is called excellent ring if it satis�es the
following conditions:

� R is Noetherian

� R is J-2

� R is a G-ring

� R is universally catenary
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The �rst examples of excellent rings will be �elds. Since we have stated
the closedness-properties for the conditions in the above de�nition, we will
immediately get, that any algebra, essentially of �nite type over a �eld, is
excellent.

Lemma 2.4.11. Any �eld is excellent.

Proof. Let k be a �eld, then it is clear that k is Noetherian and universally
catenary by 2.4.9. Now we show that k is J-2 by using condition c) of The-
orem 2.4.2:
Let L be a �nite radical extension of k = κ(〈0〉). Then, L is a �nite dimen-
sional k-vector space and we have k ⊆ L. The spectrum of L is just 〈0〉.
Hence, Reg(Spec(L)) = Spec(L) since L is regular and therefore L is J-0.
Altogether, k is J-2.
The �eld k is also a G-ring: the only map, we have to consider is the identity
k → k and this is regular. �

Proposition 2.4.12. Let R be an excellent ring and S an R-algebra essen-
tially of �nite type. Then S is excellent.

Proof. The J-2 property is preserved under passing to S by Remark 2.4.3,
S is a G-ring by Theorem 2.4.5 and S is universally catenary by Corollary
2.4.8. Hence, S is excellent. �

Remark 2.4.13. Matsumura also states in Chapter 13 of his book [Mat80],
that formal power series rings over �elds, as well as convergent power series
rings over R or C are excellent. With this, Lemma 2.4.11 and Proposition
2.4.12, we obtain a whole variety of excellent rings:

� An algebra, essentially of �nite type over a �eld, is excellent.

� If k is a �eld, then k[[x]]/I is excellent.

� Quotients of the convergent power series ring like C{x}/I are excellent.

The �nal result of this section is, that excellent rings behave well with
respect to completion and normalization:

Theorem 2.4.14. If R is a reduced excellent ring, then:

a) The completion R̂ at any ideal of R is reduced.

b) R is normalization-�nite.

c) If R is in addition semi-local, then we have for the m-adic completion,
where m denotes the Jacobson radical:

R̂ = R̂
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Proof. See [BDS14, Theorem 1.18]. �

We �nish this section with an example:

Example 2.4.15. Let k be a �eld, R = k[x, y]/〈xy〉 and S = R〈x,y〉. Then
we know from previous examples, i.e. 2.1.16, that R is reduced and R =
k[y] × k[x]. In Proposition 2.2.6, we have seen that S is the localization of
R at 〈x, y〉:

S = R〈x,y〉 = k[y]〈y〉 × k[x]〈x〉

Since S is essentially of �nite type over k, it is excellent by Remark 2.4.13.
So we can compute the completion of S:
First, we note that Ŝ = k[[x, y]]/〈xy〉 by Example 1.4.6 and Proposition
1.4.14. Then this is also reduced and the minimal primes are 〈x〉 and 〈y〉.
Hence, we can compute the normalization by Proposition 2.1.15, and keeping
Theorem 2.4.14 in mind, we obtain:

Ŝ = Ŝ = k[[y]]× k[[x]]

2.5 Normalization and �eld extension

We will later compute invariants of algebras over the �eld Q and we would
like to lift the results to algebras over C. We therefore examine the interplay
between �eld extension and normalization. Like in the preceding section,
the �nal goal is a theorem, that allows us to swap �eld extension and nor-
malization of an algebra over a perfect �eld.
Before we can state this, we need the notion of a normal ring homomorphism:

De�nition 2.5.1. A ring homomorphism R → S is called normal if it is
�at and if the ring S ⊗R L is normal for any P ∈ Spec(R) and any �eld
extension L of κ(P ).

The idea of such ring homomorphisms is, that they preserve normality
under base-change. The special case, where the base-change is actually a
�eld extension, is treated in Theorem 2.5.3. But �rst, we have to state,
when a �eld extension is normal:

Proposition 2.5.2. If L/k is a separable �eld extension, then k → L is
normal.

Proof. The statement is part of [HS06, Proposition 19.1.1]. �

Hence, we know how to generate normal �eld extensions - in particular,
over a perfect �eld, any �eld extension is normal. So we may consider now
the above mentioned idea of normal homomorphisms.
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Theorem 2.5.3. Let k → L be a normal �eld extension. If S is a normal
k-algebra, the ring S ⊗k L is a normal L-algebra.

Proof. This is a special case of [HS06, Theorem 19.4.2]. �

This is a key fact in proving the �nal theorem of this section.

Theorem 2.5.4. Let S be a reduced Noetherian normalization-�nite algebra
over a perfect �eld k. Then taking the integral closure commutes with �eld
extensions:

S ⊗k L = S ⊗k L

for any �eld extension L/k.
In particular: the statement holds for any reduced excellent algebra over a
perfect �eld.

Proof. Let L be any �eld extension of the perfect �eld k. Then by de�nition,
L is separable over k. Proposition 2.5.2 shows, that the �eld extension is
even normal. The ring S is normalization-�nite, so we may apply Proposition
2.3.4 and obtain that S is a normal k-algebra. Hence, we are in the following
situation:

S S ⊗k L

k Lnormal

We can apply Theorem 2.5.3 and obtain that S ⊗k L is a normal L-algebra.

The extension S ⊆ S is clearly integral. Applying Lemma 2.1.6, with
T = S⊗kL, we get that also S⊗kL ⊆ S⊗kL is an integral extension. Thus,
we can extend the above picture:

S S ⊗k L

S S ⊗k L

k L

int int

normal

We want to use Proposition 2.1.13 to prove that S⊗k L is the normalization
of S ⊗k L, so that we can deduce: S ⊗k L = S ⊗k L. Therefore we have to
show that S ⊗k L is reduced, S ⊗k L is integrally closed and that we have
an inclusion S ⊗k L ↪→ Q(S ⊗k L).

The normal algebra S ⊗k L is integrally closed: normal rings are always
integrally closed by Lemma 2.3.2.
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We mentioned above that L/k is separable and since S is reduced, we
may apply Lemma 1.3.4 and obtain that S ⊗k L is also reduced.

To show the inclusion, we �rst note that S ⊆ Q(S) and since L is �at
over k by A.2.3, we also have: S⊗kL ⊆ Q(S)⊗kL. So it is enough to embed
Q(S)⊗k L into Q(S ⊗k L).
Let Sreg and (S⊗kL)reg denote the sets of non-zero divisors of S and S⊗kL
and consider the canonical map ϕ : S → S ⊗k L. Then ϕ maps Sreg to

(S ⊗k L)reg: Let b be a non-zero divisor of S, then S
·b→ S is injective and

since L is �at over k, also the induced map S ⊗k L
·b⊗id−→ S ⊗k L is injective.

But the latter map corresponds to multiplication by b⊗ 1.
Now set W = ϕ(Sreg) =

{
s⊗ 1

∣∣ s ∈ Sreg}. This is a multiplicatively closed
subset of S⊗kL and by the above considerations, we have: W ⊆ (S⊗kL)reg.
Hence, the natural map W−1(S ⊗k L) → Q(S ⊗k L) is injective. Now it is
left to show that W−1(S ⊗k L) ∼= Q(S)⊗k L.
If we tensor the canonical embedding S → Q(S) by L over k, we get the
embedding S⊗kL→ Q(S)⊗kL. This map sendsW to the units ofQ(S)⊗kL.
By the universal property of localization, we obtain an injective map:

W−1(S ⊗k L) −→ Q(S)⊗k L
a⊗ l
b⊗ 1

7−→ a

b
⊗ l

The map is also surjective: let
∑ ai

bi
⊗ li ∈ Q(S)⊗k L, then bi is an element

of Sreg and bi ⊗ 1 ∈W . So we can construct the preimage:
∑ ai⊗li

bi⊗1 . Hence,
the map is an isomorphism and this completes the proof of the theorem. �

As an illustration, we consider our standard-example:

Example 2.5.5. Let S = Q[x, y]/〈xy〉. Then S ⊗Q C = C[x, y]/〈xy〉. Since
we are in characteristic 0, the ground �eld is perfect and S is reduced excel-
lent. Hence, we get by Theorem 2.5.4:

(Q[y]×Q[x])⊗Q C = S ⊗Q C = S ⊗Q C = C[y]× C[x]
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3. Derivations, Kähler

di�erentials and universally

�nite di�erentials

A collection of the theory of Kähler di�erentials and related topics is given
in this chapter. In Section 3.1, we begin with the notion of derivations. Af-
ter this, we look at the module of Kähler di�erentials and state properties
about its structure in certain situations. Section 3.2 treats di�erential alge-
bras. These are graded algebras with a certain degree 1 map. Like for the
Kähler di�erentials, we will also de�ne an universal object here: the univer-
sal di�erential algebra. To obtain �nitely generated objects, we will consider
universally �nite di�erentials in Section 3.3. We treat the algebra and the
module case simultaneously: we will get an algebra and a module that are
still universal but �nitely generated. In the last section of this chapter, 3.4,
we take a closer look at derivations and derivation modules: the main content
is the behaviour of these modules under natural operations like localization
or completion.

3.1 Kähler di�erentials

The very well-known concept of derivations in analysis can partly be trans-
lated to algebra: here we will take a look at maps that behave like derivations.
Such maps will also be called derivations and we will see that they satisfy the
product rule, the quotient rule and other rules that we already know. The
module of Kähler di�erentials connects derivations with a universal prop-
erty: we will be able to represent a given derivation as a linear map - so
we actually linearize derivations, although they are non-linear over the ring,
where they are de�ned. It will turn out that this universal property uniquely
determines the module and that any ring has a module of Kähler di�eren-
tials. In particular, it will often have a nice form but is not always �nitely
generated. Therefore, we will take a look at universally �nite di�erentials in
Section 3.3.
We begin with the de�nition of derivations, these are maps that satisfy the
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product rule.

De�nition 3.1.1. Let R be a ring, S an R-algebra and M an S-module.

a) An R-linear map d : S →M is called R-derivation if it ful�ls:

d(ab) = ad(b) + bd(a)

for all a, b in S. If there is no confusion, we just call d a derivation
and write da for the image of a under d.

b) The set of all R-derivations from S to M is denoted by DerR(S,M).
This forms an S-module, as is easily checked. Therefore, it is called
module of derivations. If S = M , then we just write: DerR(S).

The fact that derivations satisfy the product rule already allows us to
phrase some easy properties, known from analysis.

Lemma 3.1.2. Let R be a ring, S an R-algebra, M an S-module and d :
S →M a derivation. Then the following statements hold:

a) d(r) = 0 for any r ∈ R - Constants are mapped to zero.

b) d(sn) = nsn−1d(s) - The power rule.

c) For t ∈ S∗ and s ∈ S, we have: d(st−1) = (t−1)2(td(s)− sd(t)) - The
quotient rule.

Proof. This is an extract of [Kun86, 1.9]. �

With the help of part c) of Lemma 3.1.2, we can extend derivations to
quotient �elds:

Lemma 3.1.3. If R is a ring and S an R-algebra, then any R-derivation
S → S can be uniquely extended to an R-derivation Q(S)→ Q(S).
In particular: DerR(S) ↪→ DerR(Q(S)).

Proof. Let d : S → S be a derivation. Setting

D : Q(S) −→ Q(S)

a

b
7−→ bd(a)− ad(b)

b2
,

we obtain an R-derivation and clearly D|S = d. So we have to show that this
is the only extension of d to Q(S). Therefore, let D′ be another extension.
Then, for an element a

b of Q(S), we have by Lemma 3.1.2:

D′
(a
b

)
=
bD′(a)− aD′(b)

b2
=
bd(a)− ad(b)

b2
= D

(a
b

)
�
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Not only rules, but also explicit derivations can be translated from anal-
ysis to algebra. For example, we just take the usual partial derivative and
apply it to polynomials. This will give an important example of a derivation
on the polynomial ring. It is even possible to extend this to power series:

Example 3.1.4. Let R be a ring and S = R[x1, . . . , xn] the polynomial ring
over R. The partial derivative of a polynomial f =

∑
cαx

α1
1 · · ·xαn

n ∈ S
is de�ned by:

∂f

∂xi
=
∑

αicαx
α1
1 . . . xαi−1

i . . . xαn
n

This is again a polynomial and we obtain for any i = 1, . . . , n a derivation
on the polynomial ring:

∂

∂xi
: S −→ S,

f 7−→ ∂f

∂xi

If T = R[[x1, . . . , xn]] is the ring of formal power series over R, then the
partial derivatives induce derivations on T in the same way as on S.

We have seen in Lemma 3.1.2, that constants are mapped to zero under
derivations. This also holds for idempotent elements:

Remark 3.1.5. [Eis95, Exercise 16.1] Let R be a ring and S an R-algebra,
M an S-module and d : S → M a derivation. If b ∈ S is idempotent, then
d(b) = 0.

Proof. Using the product rule and the idempotency of b, we obtain: d(b) =
d(b2) = 2bd(b).

⇒ 0 = 2bd(b)− d(b) in M (3.1)
·b⇒ 0 = 2b2d(b)− bd(b) = 2bd(b)− bd(b) = bd(b) (3.2)

If we plug (3.2) into equation (3.1), we simply get: 0 = d(b). �

Now that we have seen some properties and examples of derivations, we
wish to gain deeper insight into the structure of the module of derivations.
But we do not examine this module directly, we focus on the construction
and properties of the so-called di�erential module and it turns out that the
derivation module is just the dual of it.

De�nition 3.1.6. Let R be a ring and S an R-algebra. The module of
(Kähler) di�erentials, written Ω1

S/R, with universal derivation d is an

S-module together with an R-derivation d : S → Ω1
S/R, satisfying the fol-

lowing universal property:
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For any S-module M and any R-derivation δ : S → M , there exists a
unique S-linear map ϕ : Ω1

S/R → M , so that the following diagram com-
mutes:

Ω1
S/R

S

M

ϕ

d

δ

It is not yet clear, why such a module should exist for an arbitrary algebra
S over a ring R. Nonetheless, we can state how it is related to the module
of derivations and that it is unique:

Remark 3.1.7. Let R be a ring and S an algebra so that Ω1
S/R exists. As

an immediate consequence of the universal property, we obtain:

a) For each S-module M , we have a natural isomorphism:

DerR(S,M) ∼= HomS(Ω1
S/R,M)

and in particular: DerR(S) ∼= HomS(Ω1
S/R, S).

b) The module Ω1
S/R is unique.

c) If d is the universal derivation, then we get an equality:

Ω1
S/R = 〈ds

∣∣ s ∈ S〉S
since the module on the right-hand side already satis�es the universal
property and is a submodule of Ω1

S/R.

Theorem 3.1.8. For a ring R and an R-algebra S, the module of Kähler
di�erentials exists.

Proof. This is [Kun86, Theorem 1.19]. �

Now we collect some statements about the structure of Ω1
S/R. Having

geometry in mind, we should start with the case, where S is a polynomial
ring over R. We will use the partial derivations, seen in Example 3.1.4, to
construct a universal derivation and the module of Kähler di�erentials:

Proposition 3.1.9. Let R be a ring and S = R[x1, . . . , xn], then

Ω1
S/R =

n⊕
i=1

Sdxi

and the universal derivation is given by: f 7→
∑n

i=1
∂f
∂xi
dxi.
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Proof. See [Eis95, Proposition 16.1]. �

For describing the structure of the Kähler di�erentials in more general
cases, it is practical to have the two fundamental sequences:

Proposition 3.1.10. Let R → S → T be ring homomorphisms. Then we
get an exact sequence of T -modules:

T ⊗S Ω1
S/R Ω1

T/R Ω1
T/S 0,

where the left-hand map takes t⊗ ds to tds and the right-hand map sends dt
to dt.

Proof. This is [Eis95, Proposition 16.2]. �

Proposition 3.1.11. Let R be a ring and S → T a surjective ring-homomorphism
of R-algebras with kernel I, then we get an exact sequence of T -modules:

I/I2 T ⊗S Ω1
S/R Ω1

T/R 0,

where the left-hand map sends f to 1 ⊗ df and the right-hand map sends
a⊗ db to adb.

Proof. See [Eis95, Proposition 16.3]. �

As a consequence, we can describe the structure of quotients:

Corollary 3.1.12. Let R be a ring and S an R-algebra. If I is an ideal of
S and T = S/I, then:

Ω1
T/R = Ω1

S/R/(dI + IΩ1
S/R)

Proof. We get an epimorphism S → T and therefore by Proposition 3.1.11
the exactness of:

I/I2 T ⊗S Ω1
S/R Ω1

T/R 0
ϕ

Hence, Ω1
T/R = Coker(ϕ). But since

T ⊗S Ω1
S/R = S/I ⊗S Ω1

S/R = Ω1
S/R/IΩ1

S/R

and ϕ maps f to 1⊗ df , we get: Coker(ϕ) = Ω1
S/R/(dI + IΩ1

S/R). �

Kähler di�erentials can also deal with base changes from the underlying
ring: If we have a ring R and an R-algebra S with di�erential module Ω1

S/R,

then tensoring with another R-algebra T yields the module Ω1
S/R⊗RT . This

is in fact the module of di�erentials of S ⊗R T over T.
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Proposition 3.1.13. Let R be a ring. Then for any R-algebras S and T ,
we have:

Ω1
S/R ⊗R T ∼= Ω1

(S⊗RT )/T

Proof. See [Eis95, Proposition 16.4]. �

In Proposition 3.1.9, we have considered the case where S is a polynomial
ring over R. The next result shows, what happens if T is a polynomial ring
over S, which is an arbitrary algebra over R:

Proposition 3.1.14. Let R be a ring and S an arbitrary R-algebra. If
T = S[x1, . . . , xn], then we have an isomorphism:

Ω1
T/R
∼= T ⊗S Ω1

S/R ⊕
n⊕
i=1

Tdxi

Proof. This is [Eis95, Corollary 16.6]. �

As an application of the preceding proposition, we may consider the
following fact, that we will need in Chapter 4.

Lemma 3.1.15. Let R be a ring, S and T R-algebras and S → T of �nite
type. If Ω1

S/R is �nitely generated over S, then Ω1
T/R is �nitely generated

over T .

Proof. By assumption, we can write: T = S[x]/I, where x = x1, . . . , xn and
applying Proposition 3.1.14, we can deduce that

Ω1
S[x]/R

∼= S[x]⊗S Ω1
S/R ⊕

n⊕
i=1

S[x]dxi

Since Ω1
S/R is �nitely generated over S, Ω1

S[x]/R is �nitely generated over

S[x]. By Corollary 3.1.12, we know that Ω1
T/R is a quotient of Ω1

S[x]/R and
therefore �nitely generated over T . �

The next standard operation is localization. Kähler di�erentials also
behave well with respect to this:

Proposition 3.1.16. If R is a ring, S an R-algebra andW a multiplicatively
closed subset of S, then:

W−1Ω1
S/R
∼= Ω1

W−1S/R

Proof. See [Eis95, Proposition 16.9]. �
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The last structural result for the di�erential module we consider, is the
behaviour of Ω1

S/R if S is actually a product of algebras. This is of particular
interest in Chapter 4, since we want to describe the derivation module of
the normalization of a reduced ring. The way to do this, is via considering
the Kähler di�erentials of S. But the normalization is a product of rings by
Proposition 2.1.15.

Proposition 3.1.17. [Eis95, Proposition 16.10] If R is a ring, S1, . . . , Sr
are R-algebras and S =

∏
Si, then: ΩS/R =

∏
ΩSi/R.

Proof. We give a more detailed version of the proof of Eisenbud. The
idea is to show that

∏
ΩSi/R satis�es the universal property of the Käh-

ler di�erential module. Let di be the universal derivation of ΩSi/R and set
d = (d1, . . . , dr) : S →

∏
ΩSi/R. Obviously, this is a derivation, since any

component is one.

If M is an arbitrary S-module and δ : S →M is a derivation, then con-
sider Mi = eiM , where ei = (0, . . . , 1, . . . , 0) ∈ S is the "i-th unit vector".
Note that the elements ei are idempotent and that Mi is a module over S.
Since Si is a subring of S, Mi is also an Si-module.

Now split the derivation δ using δi : Si → Mi, a 7→ δ(aei). This is in
fact a map to Mi because δi(a) = δ(aei) = δ(ae2

i ) = eiδ(aei) + aeiδ(ei) =
eiδ(aei) ∈ Mi, by the product rule and Remark 3.1.5. In particular, we
obtain:

δi(a) = δi(a)ei (3.3)

The map δi is also a derivation:

δi(ab) = δ(abei) = δ(aeibei) = δ(aei)bei + δ(bei)aei

= δi(a)eib+ δi(b)eia
(3.3)
= δi(a)b+ δi(b)a

By the universal property of ΩSi/R, there exists a unique Si-linear map
ϕi : ΩSi/R →Mi such that δi = ϕi◦di. By combining the ϕi, we get a product
map (ϕ1, . . . , ϕr) ∈

∏
HomSi(ΩSi/R,Mi). Then by the 1:1-correspondence

from Lemma A.3.4, there is a map ϕ ∈ HomS(
∏

ΩSi/R,M) with ϕ(a1, . . . , ar) =
(ϕ1(a1), . . . , ϕr(ar)). In fact, this is the map needed to satisfy the universal
property:

δ(a1, . . . , ar) = δ

(
r∑
i=1

aiei

)
=

r∑
i=1

δ(aiei)
(3.3)
=

r∑
i=1

δi(ai)ei =

r∑
i=1

ϕi(di(ai))ei

= (ϕ1(d1(a1)), . . . , ϕr(dr(ar))) = ϕ(d(a1, . . . , ar))

The map ϕ is also unique, since any ϕ′ ∈ HomS(
∏

ΩSi/R,M) is again a
product of maps ϕ′i ∈ HomSi(ΩSi/R,Mi) by Lemma A.3.4. If ϕ′ satis�es
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δ = ϕ′ ◦ d, then the ϕ′i satisfy δi = ϕ′i ◦ di. But the maps ϕi stem from the
universal property - they are unique. This implies that ϕ′i = ϕi and thus
ϕ′ = ϕ. �

There are many more structural results on Kähler di�erentials. But for
our purpose, the facts collected in this sections, are enough. We �nish this
section with an example:

Example 3.1.18. Let k be a �eld and R = k[x, y]

a) Let S = R/I, where I = 〈xy〉. Then we get by Proposition 3.1.9, that
Ω1
R/k = Rdx⊕Rdy and using Corollary 3.1.12, we can deduce:

Ω1
S/k = Ω1

R/k/(dI + IΩ1
R/k) = (Rdx⊕Rdy)/(dI + I(Rdx⊕Rdy))

= (Sdx⊕ Sdy)/ dI

And since dI is generated by d(xy) = ydx+ xdy, we obtain:

Ω1
S/k = (Sdx⊕ Sdy)/〈ydx+ xdy〉S

b) We know from Example 2.1.16, that S = k[y] × k[x]. Hence, we may
apply Proposition 3.1.17 to get:

Ω1
S/k

= Ω1
k[y]/k × Ω1

k[x]/k = k[y]dy × k[x]dx

c) More general, let R = k[x1, . . . , xn], I an ideal of R and S = R/I.
Then we know, that I is �nitely generated, I = 〈f1, . . . , fr〉. Thus, dI
is generated by df1, . . . , dfr. If we apply Proposition 3.1.9 and Corollary
3.1.12 as in a), we obtain:

Ω1
S/k = Ω1

R/k/(dI + IΩ1
R/k)

=

n⊕
i=1

Rdxi /〈df1, . . . , dfr, f1, . . . , fr〉R

=

n⊕
i=1

Sdxi /〈df1, . . . , dfr〉S

d) If T is an algebra essentially of �nite type over k, then we have that
T is a localization of a ring S = k[x1, . . . , xn]/I at a multiplicatively
closed subset W . Since we know the form of Ω1

S/k by part c), we may
apply Proposition 3.1.16 and obtain:

Ω1
T/k
∼= W−1Ω1

S/k

In particular: Ω1
T/k is a �nitely generated module over T .
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e) If k has characteristic 0, then it is shown in [Kun86, Example 5.5],
that Ω1

k[[x]]/k is not �nitely generated over k[[x]]. But this means, that
our �rst guess, the module k[[x]]dx, cannot be the module of Kähler
di�erentials. Nonetheless, we will see in Section 3.3, that this "natural"
module still plays an important role.

3.2 Di�erential algebras

We have seen in the preceding section, that the Kähler di�erentials have a
module structure and satisfy a certain universal property. Now we would
like to have an object, that still satis�es a comparable universal property,
but has an algebra structure. Therefore, we will �rst consider general di�er-
ential algebras: graded algebras which carry a derivation as degree 1 map.
Then we will formulate the universal property, leading us to the so called
universal di�erential algebras. It turns out, that such a di�erential algebra
has a particular nice form: it is the exterior algebra of a well-known module.
For a SINGULAR-implementation of universal di�erential algebras over poly-
nomial rings, see Appendix C.

Throughout this section, we may assume that R is a ring and S is an
algebra over R.

De�nition 3.2.1. A di�erential algebra of S/R is an associative graded,
not necessarily commutative, S-algebra

Ω =
⊕
n∈N

Ωn,

which carries an R-linear degree 1 map: d : Ω → Ω, so that the following
conditions are satis�ed:

� S = Ω0 is in the center of Ω.

� Ω is generated by the elements ds, s ∈ S as an S-algebra.

� For s, t ∈ S, we have: d(st) = sdt+ tds.

� For s, s1, . . . , sm ∈ S, we have: d(sds1 . . . dsm) = dsds1 . . . dsm.

� The product dsds is zero for any s ∈ S.

The map d is called di�erentiation of Ω and the elements of Ωn are called
n-forms. Sometimes, we will denote the di�erential algebra by (Ω, d), to
mention what the di�erentiation of Ω is.

With this, we can already state some useful rules:
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Lemma 3.2.2. Let (Ω, d) be a di�erential algebra of S/R with di�erentiation
d. Then we can derive the following:

a) d|S : S → Ω1 is an R-derivation.

b) Elements of the form sds1 . . . dsm have degree m and an arbitrary ω ∈
Ω is a �nite sum of such elements.

c) If ω =
∑
sds1 . . . dsm, then dω =

∑
dsds1 . . . dsm.

d) Ω is anticommutative: for any ωm ∈ Ωm and ωn ∈ Ωn, we have:

ωm · ωn = (−1)mnωn · ωm

e) The di�erential algebra (Ω, d) induces a complex of R-modules:

Ω : Ω0 Ω1 Ω2 . . .d d d

Proof. This is part of [Kun86, 2.2]. �

Before we move on to morphisms between di�erential algebras, we should
have a look at some examples:

Example 3.2.3.

a) The trivial di�erential algebra is given by: Ω0 = S and all other graded
parts are de�ned to be zero: Ωi = 0 for i > 0. The di�erentiation of Ω
is the zero map, then this is a di�erential algebra.

b) If S = R[x1, . . . , xn], then Ω1
S/R =

⊕n
i=1 Sdxi, as seen in Proposition

3.1.9. Now set Ωj =
∧j Ω1

S/R. This is a free S-module of rank
(
n
j

)
and

the basis is given by the elements:

dxν1 ∧ · · · ∧ dxνj , 1 ≤ ν1 < · · · < νj ≤ n

De�ne Ω =
⊕

j∈N Ωj =
∧

Ω1
S/R and let d denote the universal deriva-

tion of S/R, then we want to extend d to Ω. Therefore, it is enough
to lift it to homogeneous elements. Let ωj ∈ Ωj be homogeneous, then
we can write:

ωj =
∑

1≤ν1<···<νj≤n
sν1...νjdxν1 ∧ · · · ∧ dxνj

De�ne d : Ωj → Ωj+1 by

dωj =
∑

1≤ν1<···<νj≤n
dsν1...νj ∧ dxν1 ∧ · · · ∧ dxνj ∈ Ωj+1

Then this is indeed a di�erential algebra of S/R. This is proven in
[Kun86, 2.5].
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In fact, we will see, that such exterior algebras are the most universal
di�erential algebras. Any other di�erential algebra of S/R will be a quotient
of them.
Now let us de�ne maps between di�erential algebras, that are compatible
with the structure.

De�nition 3.2.4. Let (Ω, d) be a di�erential algebra of S/R and (Ω′, d′) a
di�erential algebra of T/R, where T is another R-algebra. A map ϕ : Ω→ Ω′

is called homomorphism of di�erential algebras if:

� ϕ is a homomorphism of R-algebras.

� ϕ(Ωn) ⊆ Ω′n for any n ∈ N.

� ϕ is compatible with di�erentiation: ϕ ◦ d = d′ ◦ ϕ

We also write ϕn for ϕ|Ωn : Ωn → Ω′n. Note, that ϕ0 : S → T is an
homomorphism of R-algebras.

Remark 3.2.5. Let (Ω, d) be a di�erential algebra of S/R, (Ω′, d′) a dif-
ferential algebra of T/R and ϕ : Ω → Ω′ a homomorphisms of di�erential
algebras.

a) The map ϕ is uniquely determined by its restriction to the degree 0
part: ϕ0.
In particular: if ρ : S → T is a homomorphism of R-algebras, then
there is at most one homomorphism of di�erential algebras ϕ : Ω→ Ω′,
which satis�es: ϕ0 = ρ.

b) The image of ϕ is a di�erential algebra of the R-algebra ϕ0(S).

c) Ker(ϕ) = I is a homogeneous, two-sided, di�erentially closed (dI ⊆ I)
ideal of Ω.

Proof. Let ω ∈ Ω be an arbitrary element. Using Lemma 3.2.2, we can write:

ω =
∑

sds1 . . . dsm

Now we apply ϕ and make use of the fact, that we deal with a homomorphism
of di�erential algebras:

ϕ(ω) =
∑

ϕ(s)ϕ(ds1) . . . ϕ(dsm)

=
∑

ϕ(s)d′ϕ(s1) . . . d′ϕ(sm)

=
∑

ϕ0(s)d′ϕ0(s1) . . . d′ϕ0(sm)

Hence, ϕ is only determined by its degree 0 part. This proves part a).
Statement b) and c) are part of [Kun86, 2.8]. �
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Now that we know that the Kernel of a homomorphism of di�erential
algebras ϕ : Ω → Ω′ is a homogeneous, di�erentially closed ideal, denoted
by I, we may consider the object Ω/I. This is an algebra over S/(I ∩ S)
and it is naturally graded: its homogeneous parts are Ωn/(I ∩ Ωn). The
di�erentiation d of Ω induces a map d : Ω/I → Ω/I, ω 7→ dω. This is
well-de�ned since I is di�erentially closed and, in fact, the pair (Ω/I, d) also
satis�es the other conditions of De�nition 3.2.1:

Proposition 3.2.6. Let I be a homogeneous right (left) ideal of the di�er-
ential algebra (Ω, d) over S. Then:

a) I is a two-sided ideal in Ω.

b) If I is, in addition, di�erentially closed, then we have that Ω/I with
the induced map d : Ω/I → Ω/I is a di�erential algebra of S/(I ∩ S)
over R.

c) The canonical map ε : Ω → Ω/I is a homomorphism of di�erential
algebras.

Proof. Since Ω is anticommutative by Lemma 3.2.2, Part a) is a special case
of [Kun86, Lemma 2.3].
The statements b) and c) are part of [Kun86, Proposition 2.9]. �

To de�ne the universal property, which we mentioned at the beginning
of this section, we will need a special class of homomorphisms. If ρ : S → T
is a homomorphism of R-algebras, Ω a di�erential algebra of S/R and Ω′ a
di�erential algebra of T/R, then we have seen in Remark 3.2.5, that there
exists at most one homomorphism of di�erential algebras ϕ : Ω → Ω′, so
that ϕ0 = ρ. Such a map ϕ is called ρ-homomorphism. In the case, where
S = T and ρ = idS , a ρ-homomorphism is also called S-homomorphism.

Lemma 3.2.7. Let ϕ be a ρ-homomorphism between di�erential algebras
(Ω, d) and (Ω′, d′). Then:

a) It satis�es the formula:

ϕ(
∑

sds1 . . . dsm ) =
∑

ρ(s)d′ρ(s1) . . . d′ρ(sm)

b) The map ϕ is surjective if and only if ρ is.
In particular: any S-homomorphism is surjective.

c) If Ω and Ω′ are di�erential algebras of S/R and ϕ : Ω→ Ω′, ψ : Ω′ → Ω
are S-homomorphisms, then ϕ and ψ are isomorphisms, inverse to each
other.
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Proof. As in the proof of Remark 3.2.5, we can deduce:

ϕ(
∑

sds1 . . . dsm ) =
∑

ϕ0(s)d′ϕ0(s1) . . . d′ϕ0(sm)

And since ϕ is a ρ-homomorphisms, we get that ϕ0 = ρ. This proves a).
To prove b), assume that ρ is a map from S to T . Any element of Ω′ is a
sum of elements of the form: td′t1 . . . d′tm, where t, ti ∈ T by Lemma 3.2.2.
Hence, the claim is a direct consequence of a).
For Part c), note that ψ ◦ϕ : Ω→ Ω is an S-homomorphism. But idΩ is also
an S-homomorphism and therefore they have to be equal. Similar arguments
work for ϕ ◦ ψ. �

We know that, for an arbitrary di�erential algebra, there is at most
one ρ-homomorphism. But we did not yet mention anything about the
existence. The following universal property guarantees the existence of ρ-
homomorphisms:

De�nition 3.2.8. Let (ΩS/R, d) be a di�erential algebra of S/R, that sat-
is�es the following universal property:

For any homomorphism ρ : S → T of R-algebras and any di�erential
algebra (Ω, δ) of T/R, there is a (unique) ρ-homomorphism h : ΩS/R → Ω.
So we are in the following situation:

ΩS/R Ω

S T

∃!h

ρ

Then (ΩS/R, d) is called universal di�erential algebra of S/R.

Theorem 3.2.9. For any algebra S/R, a universal di�erential algebra ΩS/R

exists.

Proof. See [Kun86, Theorem 3.2]. �

Like for the Kähler di�erentials, we also get the uniqueness from the
universal property:

Remark 3.2.10. The universal di�erential algebra is unique up to isomor-
phism.

Proof. If (Ω, δ) is another di�erential algebra of S/R, satisfying the universal
property, then we get S-homomorphisms h : ΩS/R → Ω and g : Ω→ ΩS/R:

ΩS/R Ω

S S

∃!h

∃!g

idS

idS
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But then we obtain by Lemma 3.2.7 that these two S-homomorphisms are
inverse to each other. Hence, ΩS/R

∼= Ω. �

We have seen in Proposition 3.2.6 that a quotient of a di�erential algebra
by an ideal is again a di�erential algebra, as long as the ideal is homogeneous
and di�erentially closed. A consequence of the universal property of ΩS/R is
that all di�erential algebras of S/R are quotients of ΩS/R by such ideals.

Corollary 3.2.11. Let Ω be any di�erential algebra of S/R, then we get an
equality:

ΩS/R /I = Ω,

where I is a homogeneous di�erentially closed ideal of ΩS/R.

Proof. By the universal property, we get an S-homomorphism h : ΩS/R → Ω.
This is a surjective map by Lemma 3.2.7 and the Kernel of h is a homoge-
neous di�erentially closed ideal of ΩS/R by Remark 3.2.5. �

The next step in this section is to show that universal di�erential algebras
are just exterior algebras. But �rst, we consider a relation, that already holds
for any di�erential algebra:

Proposition 3.2.12. Let Ω be a di�erential algebra of S/R. Then there is
a canonical epimorphism of graded S-algebras:

ε :
∧

Ω1 −→ Ω

a1 ∧ · · · ∧ am 7−→ a1 · · · am

Proof. See [Kun86, Proposition 3.6]. �

Now we want ε to be an isomorphism - this happens if the di�erential
algebra is universal:

Proposition 3.2.13. The universal di�erential algebra ΩS/R of S/R is an
exterior algebra:

ΩS/R =
∧

Ω1
S/R

Proof. This is part of [Kun86, Proposition 3.8]. �

By Lemma 3.2.2, we know that the di�erentiation d of ΩS/R, restricted
to the degree 0 part, is a derivation: d|S : S → Ω1

S/R. Using the universal

property of ΩS/R one can show, that d|S is universal and that Ω1
S/R is the

module of Kähler di�erentials. Hence, the degree 1 part of ΩS/R and the
Kähler di�erentials do not only share notation, they really coincide.
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Proposition 3.2.14. Let (ΩS/R, d) be the universal di�erential algebra of
S/R. Then the R-derivation d|S : S → Ω1

S/R is universal and Ω1
S/R is the

module of Kähler di�erentials.
In particular, the universal di�erential algebra is the exterior algebra of the
module of Kähler di�erentials.

Proof. This is [Kun86, Proposition 3.9]. �

With this proposition, we can easily construct the universal di�erential
algebra, as far as we know the module of Kähler di�erentials.

Example 3.2.15.

a) In Example 3.2.3, we have already constructed
∧

Ω1
S/R, where S =

R[x1, . . . , xn]. Now we know, that this is the universal di�erential
algebra ΩS/R. In this case, it is free of rank

∑n
j=0

(
n
j

)
= 2n.

b) In Example 3.1.18, we have constructed the module of Kähler di�er-
entials Ω1

S/k in the case R = k[x1, . . . , xn], S = R/I and k a �eld. If
I = 〈f1, . . . , fr〉, then:

ΩS/k =
∧

Ω1
S/k =

∧(
n⊕
i=1

Rdxi /〈df1, . . . , dfr, f1, . . . , fr〉R

)

=
∧(

n⊕
i=1

Sdxi /〈df1, . . . , dfr〉S

)
This will be a very helpful representation when implementing the uni-
versal di�erential algebra over a polynomial (quotient) ring.

3.3 Universally �nite di�erentials

We have seen in Example 3.1.18 that not any module of Kähler di�erentials
is �nitely generated. But if we want to do computations, it would surely be
helpful to have �nitely generated modules that still satisfy a universal prop-
erty like the Kähler di�erentials do. We will de�ne this universal property
and state the existence of such modules - they are called universally �nite
modules of di�erentials. But �rst, we do this at the level of di�erential al-
gebras: we will de�ne a universal property that contains a certain �niteness
condition. This yields the notion of universally �nite di�erential algebras.
The degree 1 part of such an algebra will be the universally �nite module of
di�erentials.
In addition, we will state the fundamental sequences for universally �nite
modules of di�erentials and examine the behaviour of this module with re-
spect to completion.
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We want to deal with �nitely generated di�erential algebras. Therefore,
we should examine when such an algebra is actually �nitely generated:

Lemma 3.3.1. Let S/R be an algebra and (Ω, d) a di�erential algebra of
S/R. Then the following equivalence holds:

Ω is a �nitely generated S-module ⇔ Ω1 is a �nitely generated S-module

Proof. Assume Ω is �nitely generated. Then Ω = 〈ω1, . . . , ωk〉S . Pick the
generators ωi that are of degree 1. These generate Ω1 since Ω is graded.
For the converse direction, let Ω1 = 〈t1, . . . , tl〉S . By Lemma 3.2.2, we
know that ti is a sum of elements s′jdsj , where s′j , sj ∈ S. Hence, we
may assume, that ti = dsi for an si ∈ S. The same lemma implies that
Ωm = 〈dsν1 · · · dsνm |1 ≤ νj ≤ l〉S . Hence, any graded part is �nitely
generated. It is left to show that there are only �nitely many non-zero
graded parts: consider Ωm, where m > l. Then the generators are products
dsν1 · · · dsνm , where 1 ≤ νj ≤ l. In this product, a factor occurs twice. Using
the anticommutativity of Ω, which we have by Lemma 3.2.2 and the fact
that dsds = 0 for any s ∈ S, we have dsν1 · · · dsνm = 0 and thus Ωm = 0. �

Now we formulate a universal property, similar to that of the universal
di�erential algebra: the di�erence will be the integrated �niteness.

De�nition 3.3.2. Let S/R be an algebra and (Ω̃S/R, d) a di�erential algebra

of S/R. Then Ω̃S/R is called universally �nite if it is �nitely generated as
S-module and for each �nitely generated di�erential algebra (Ω, δ) of S/R,
there is a (unique) S-homomorphism Ω̃S/R → Ω.
Like for the universal di�erential algebra, we get uniqueness up to isomor-
phism and we denote the universally �nite di�erential algebra by Ω̃S/R.

Since S-homomorphisms are always surjective, we could rephrase the
universal property: any �nitely generated di�erential algebra of S/R is a
quotient of Ω̃S/R by a homogeneous di�erentially closed ideal. This is simi-
lar to Corollary 3.2.11.

Obviously, the universal di�erential algebra ΩS/R satis�es the universal

property of Ω̃S/R if it is �nitely generated. Hence, we obtain:

Remark 3.3.3. For an algebra S/R, the following holds: if ΩS/R is �nitely

generated, then: Ω̃S/R = ΩS/R.

We have already seen examples for universally �nite di�erential algebras:
the algebras constructed in 3.2.15 are �nitely generated. Hence, they are also
universally �nite. But we shall consider an example, where the universally
�nite di�erential algebra does not exist.
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Example 3.3.4. If S/R is an algebra and S is a �eld, then Ω̃S/R exists if
and only if ΩS/R is �nitely generated.
For the proof, we refer to [Kun86, Example 11.2].

Now that we have done the step from di�erential algebras to �nitely
generated di�erential algebras, we should also do this for modules of dif-
ferentials: we integrate a �niteness condition into the universal property of
Kähler di�erentials:

De�nition 3.3.5. Let R be a ring and S an R-algebra. Suppose, we have
a �nitely generated S-module Ω̃1

S/R and an R-derivation d : S → Ω̃1
S/R, so

that the pair (d, Ω̃1
S/R) satis�es the following universal property:

For any �nitely generated S-moduleM and any R-derivation δ : S →M ,
there exists a unique S-linear map ϕ : Ω̃1

S/R → M so that the following
diagram commutes:

Ω̃1
S/R

S

M

ϕ

d

δ

Then Ω̃1
S/R is called universally �nite module of di�erentials and d is

called universally �nite derivation.

Remark 3.3.6. Let R be a ring and S an R-algebra.

a) If the module of Kähler di�erentials is �nitely generated, then it is
clear that we have Ω1

S/R = Ω̃1
S/R.

b) The universal property of the universally �nite module of di�erentials
can also be translated to another useful fact - for any �nitely generated
S-module M , we get an isomorphism of S-modules:

DerR(S,M) ∼= HomS(Ω̃1
S/R,M)

In particular: DerR(S) ∼= HomS(Ω̃1
S/R, S).

Any module of Kähler di�erentials which is �nitely generated is an ex-
ample for a universally �nite module of di�erentials. We have seen modules
like this in Example 3.1.18. But we have also seen that for the power se-
ries ring over a �eld of characteristic 0, the module of Kähler di�erentials is
not �nitely generated. However, the universally �nite module of di�erentials
exists and we will see later that its form comes from a natural operation:
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Lemma 3.3.7. Let k be a �eld and R = k[[x1, . . . , xn]]. Then Ω̃1
R/k exists

and:

Ω̃1
R/k =

n⊕
i=1

Rdxi,

where d is given by f 7→
∑ ∂f

∂xi
dxi.

The proof will be given later, when we consider the completion of the
universally �nite module of di�erentials.
A similar statement also holds for the convergent power series ring:

Lemma 3.3.8. Let k be a �eld with a valuation and R = k{x1, . . . , xn}.
Then Ω̃1

R/k exists and:

Ω̃1
R/k =

n⊕
i=1

Rdxi,

where d is given by f 7→
∑ ∂f

∂xi
dxi.

Proof. See [Sch70, Satz 5.1]. �

In Proposition 3.2.14, it was shown that the �rst graded part of ΩS/R

is the module of Kähler di�erentials. Therefore, it is not surprising that an
analogue statement also holds for Ω̃S/R and the universally �nite module of
di�erentials:

Proposition 3.3.9. Let S/R be an algebra. Then Ω̃S/R exists if and only if

Ω̃1
S/R exists. In this case, the degree 1 part of Ω̃S/R is Ω̃1

S/R.

Proof. This is a consequence of [Kun86, Proposition 11.5]. �

Now that we have shown the relation between the universally �nite di�er-
ential algebra and the universally �nite module of di�erentials, we focus on
the latter. For the module of Kähler di�erentials, there are two fundamental
sequences we have already seen in Section 3.1. These sequences translate to
the current case:

Proposition 3.3.10. Let R → S → T be ring homomorphisms. If Ω̃1
T/R

exists, then Ω̃1
T/S exists and we get a canonical exact sequence of T -modules:

T ⊗S Ω1
S/R Ω̃1

T/R Ω̃1
T/S 0

Proof. See [Kun86, Proposition 11.17]. �

Proposition 3.3.11. Let R be a ring and S → T a surjective ring-homomorphism
of R-algebras with kernel I. If Ω̃1

S/R exists, then Ω̃1
T/R exists and we get an

exact sequence of T -modules:

I/I2 T ⊗S Ω̃1
S/R Ω̃1

T/R 0
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Proof. See [Kun86, Corollary 11.10]. �

Corollary 3.3.12. Let R be a ring, S an R-algebra, I an ideal of S and
T = S/I. If Ω̃1

S/R exists, then Ω̃1
T/R exists and:

Ω̃1
T/R = Ω̃1

S/R/(dI + IΩ̃1
S/R)

Proof. By Proposition 3.3.11, the universally �nite module of di�erentials
Ω̃1
T/R exists and we have the exact sequence. Now the proof is similar to

Corollary 3.1.12. �

The following important statement about the universally �nite module of
di�erentials and its corollary will be very useful when dealing with derivations
of the normalization of an algebra.

Theorem 3.3.13. Let R be a ring and S a Noetherian R-algebra so that
Ω̃1
S/R exists. Let T be a �nitely generated S-algebra, then Ω̃1

T/R also exists.

Proof. This is a consequence of [Kun86, Proposition 11.9]. �

Corollary 3.3.14. Let R be a ring and S a reduced Noetherian normalization-
�nite R-algebra. If Ω̃1

S/R exists, then Ω̃1
S/R

exists.

Proof. The normalization S is a �nitely generated S-module. Hence, also a
�nitely generated S-algebra. Therefore, we may apply Theorem 3.3.13. �

The last consideration in this section is the completion of a di�erential
algebra. This will again be a di�erential algebra and under suitable assump-
tions, completion and di�erentials �commute�.

Remark 3.3.15. Assume that R is a ring and S a Noetherian R-algebra.
Let (Ω, d) be a �nitely generated di�erential algebra of S/R and q an ideal
of S. For the q-adic completion Ω̂, we have the following:

a) Ω̂ =
⊕

n∈N Ω̂n, so Ω̂ is a graded R̂-algebra.

b) The map d̂ : Ω̂→ Ω̂ is an R-linear map of degree 1.

c) The module (Ω̂, d̂) is a di�erential algebra of Ŝ/R.

Proof. This is explained in [Kun86, Remark 12.1]. �

If k is a �eld of characteristic 0, then we know that Ω1
k[x]/k = k[x]dx. If

we complete this at the maximal ideal 〈x〉, we obtain:

Ω̂1
k[x]/k = k[[x]]d̂x

But this �nitely generated module cannot be the module of Kähler di�eren-
tials of k[[x]]/k. Hence, the module of di�erentials is not preserved under
completion. Nevertheless, we get a comparable result:
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Proposition 3.3.16. Let R be a ring, S a Noetherian R-algebra, q an ideal
of S and Ŝ the q-adic completion of S.

a) If ΩS/R is �nitely generated over S, then Ω̃
Ŝ/R

exists and we have:

Ω̃
Ŝ/R

= Ω̂S/R

b) If Ω1
S/R is �nitely generated over S, then Ω̃1

Ŝ/R
exists and we have:

Ω̃1
Ŝ/R

= Ω̂1
S/R

Proof. For Part a), we refer to [Kun86, Corollary 12.5].
To prove part b), we may use Lemma 3.3.1 and obtain that ΩS/R is �nitely

generated. Hence, we apply a) and get the equality of Ω̃
Ŝ/R

and Ω̂S/R. Split-
ting the di�erential algebras into their graded parts using Remark 3.3.15, we
can deduce: ⊕

Ω̃j

Ŝ/R
= Ω̃

Ŝ/R
= Ω̂S/R =

⊕
Ω̂i
S/R

Then the graded parts of degree 1 have to be equal. �

With this proposition we can prove Lemma 3.3.7:

Proof. Consider R′ = k[x1, . . . , xn] and let m be the maximal ideal generated
by x1, . . . , xn. By Example 1.4.6, we know that the m-adic completion of R′

is the power series ring R. We also know from Proposition 3.1.9, that Ω1
R′/k =⊕n

i=1R
′dxi. Since this is �nitely generated, we can apply Proposition 3.3.16

and Proposition 1.4.12:

Ω̃1
R/k = Ω̂1

R′/k =

(
n⊕
i=1

R′dxi

)̂
=

n⊕
i=1

Rdxi

Note that we used the notation d for two derivations: d is the universal
derivation of the polynomial ring, sending a polynomial to the sum of its
partial derivatives and d is the universal derivation of the power series ring:
it maps a power series to the sum of its partial derivatives. �

There is even a generalization of Proposition 3.3.16, where we do not
need to assume the �niteness of the module of Kähler di�erentials but only
the existence of the universally �nite module of di�erentials. If we do so, we
have to restrict to semi local algebras and a particular completion:

Proposition 3.3.17. Let R be a ring, S a semi local Noetherian R-algebra
with Jacobson radical m and Ŝ the m-adic completion of S.

58



a) If Ω̃S/R exists, then Ω̃
Ŝ/R

exists and we have:

Ω̃
Ŝ/R

=
̂̃
ΩS/R

b) If Ω̃1
S/R exists, then Ω̃1

Ŝ/R
exists and we have:

Ω̃1
Ŝ/R

=
̂̃
Ω1
S/R

Proof. Part a) is [Kun86, Corollary 12.10].
For Part b), we �rst apply Proposition 3.3.9 and obtain the existence of Ω̃S/R.

Hence, we get by a) that Ω̃
Ŝ/R

exists and that it is the completion ̂̃
ΩS/R.

Both algebras are graded. Therefore, the degree 1 parts have to coincide.
The �rst graded part of Ω̃

Ŝ/R
is Ω̃1

Ŝ/R
by Proposition 3.3.9 and the degree 1

part of ̂̃
ΩS/R is ̂̃

Ω1
S/R by Remark 3.3.15. �

3.4 Derivations

The starting point of Chapter 3 were derivations. We have seen their def-
inition at the beginning of Section 3.1 and we know that we can identify
derivation modules as homomorphism modules of Kähler di�erentials or of
the universally �nite module of di�erentials. In this section, we focus on
derivation modules of type DerR(S), where S/R is an algebra. With the
aforementioned identi�cation as homomorphism modules, we can think of
DerR(S) as dual module of Ω1

S/R or Ω̃1
S/R, provided it exists. Therefore, it

is natural that properties of these two modules transfer to derivations: we
will take a look at the behaviour under localization, completion and �eld
extension.
At the end of this section, we consider I-preserving derivations. As the name
indicates, these are derivations which map an ideal I to itself, so I is pre-
served. This notion will be helpful when we deal with invariants in Chapters
4 and 5.

We begin this section with an example that shows how the structure of
the module of Kähler di�erentials in�uences the structure of the derivation
module.

Example 3.4.1. Let k be a �eld and R = k[x1, . . . , xn]. We have seen
before that Ω1

R/k =
⊕n

i=1Rdxi. Hence, the dual module HomR(Ω1
R/k, R) is

also free with a basis ϕ1, . . . , ϕn satisfying ϕi(dxj) = δij . Since we have the
isomorphism:

HomR(Ω1
R/k, R) −→ Derk(R)

ϕ 7−→ ϕ ◦ d,
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the module Derk(R) is also free with basis ϕi ◦ d, where i = 1, . . . , n. Now
let f ∈ R, then:

(ϕi ◦ d)(f) = ϕi

 n∑
j=1

∂f

∂xj
dxj

 =
n∑
j=1

∂f

∂xj
ϕi(dxj) =

∂f

∂xi

Thus, the module of derivations Derk(R) is the free module, generated by
the partial derivatives ∂

∂x1
, . . . , ∂

∂xn
.

Since we already know that the module of Kähler di�erentials commutes
with localization, we would expect the same for its dual:

Proposition 3.4.2. Let R be a ring, S a Noetherian R-algebra so that Ω1
S/R

is �nitely generated and W a multiplicatively closed subset of S. Then:

DerR(W−1S) ∼= W−1 DerR(S)

Proof. The module of Kähler di�erentials is compatible with localization
by Proposition 3.1.16. By our assumptions, it is also �nitely generated.
Hence, it is �nitely presented since S is Noetherian. If we now identify the
derivation module as homomorphism module as in Remark 3.1.7, we may
apply Proposition A.2.2, since localization is �at:

DerR(W−1S) ∼= HomW−1S(Ω1
W−1S/R,W

−1S)

∼= HomW−1S(W−1Ω1
S/R,W

−1S)

∼= W−1 HomS(Ω1
S/R, S)

∼= W−1 DerR(S) �

With the arguments used in Example 3.4.1, one could also determine the
structure of the derivation module over a localized polynomial ring. But
there is an alternative way, that is, apply Proposition 3.4.2:

Example 3.4.3. LetW be a multiplicatively closed subset ofR = k[x1, . . . , xn].
Then by Example 3.4.1:

Derk(R) =

n⊕
i=1

R
∂

∂xi

Since localization and direct sum commute, we obtain:

Derk(W
−1R) ∼= W−1 Derk(R) =

n⊕
i=1

W−1R
∂

∂xi
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Under the assumption that Ω1
S/R is �nitely generated, we get a compa-

rable behaviour, as in Proposition 3.4.2, with respect to completion of the
derivation module. But we have seen, that the module of Kähler di�eren-
tials is not always �nitely generated. Hence, we state a second result, which
covers the case when Ω1

S/R may not be �nitely generated but Ω̃1
S/R exists.

Proposition 3.4.4. Let R be a ring, S a Noetherian R-algebra, q an ideal of
S and Ŝ the q-adic completion of S. If Ω1

S/R is a �nitely generated S-module,
then the derivation module is compatible with completion:

DerR(Ŝ) ∼= ̂DerR(S)

Proof. By Proposition 3.3.16, we get that the Ŝ-module Ω̃1
Ŝ/R

exists and is

equal to Ω̂1
S/R. Hence, we can deduce, using Remark 3.3.6, Theorem 1.4.11

and Proposition A.2.2:

DerR(Ŝ) ∼= Hom
Ŝ

(Ω̃1
Ŝ/R

, Ŝ) = Hom
Ŝ

(Ω̂1
S/R, Ŝ)

∼= Hom
S⊗S Ŝ

(Ω1
S/R ⊗S Ŝ, S ⊗S Ŝ)

∼= HomS(Ω1
S/R, S)⊗S Ŝ

∼= DerR(S)⊗S Ŝ
∼= ̂DerR(S) �

Proposition 3.4.5. Let R be a ring and S a semi local Noetherian R-algebra
so that Ω̃1

S/R exists. Denote by m the Jacobson radical of S, then we get for
the m-adic completion:

DerR(Ŝ) ∼= ̂DerR(S)

Proof. We may apply Proposition 3.3.17 and obtain that Ω̃1
Ŝ/R

exists and

Ω̃1
Ŝ/R

=
̂̃
Ω1
S/R. Now the proof is similar to the proof of Proposition 3.4.4. �

In the following proposition, we examine if the derivation module Derk(S)
for an k-algebra S is stable under �eld extension of k. This will work if we
again assume that the module of Kähler di�erentials is �nitely generated.

Proposition 3.4.6. Let L/k be a �eld extension and S a Noetherian k-
algebra so that Ω1

S/k is �nitely generated. Then we get for the derivation
module of the L-algebra S ⊗k L:

DerL(S ⊗k L) ∼= Derk(S)⊗k L
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Proof. The following is a consequence of Proposition 3.1.13 and Corollary
A.2.4:

DerL(S ⊗k L) ∼= HomS⊗kL(Ω1
(S⊗kL)/L, S ⊗k L)

∼= HomS⊗kL(Ω1
S/k ⊗k L, S ⊗k L)

∼= HomS(Ω1
S/k, S)⊗k L

∼= Derk(S)⊗k L �

Like the module of Kähler di�erentials, the derivation module of a prod-
uct algebra splits into factors.

Proposition 3.4.7. Let R be a ring, S1, . . . , Sr R-algebras and S =
∏
Si.

Then we have an isomorphism DerR(S) ∼=
∏

DerR(Si).

Proof. Let for simplicity S = S1×S2. Then by Proposition 3.1.17, we obtain:
ΩS/R = ΩS1/R × ΩS2/R. Now we may apply Lemma A.3.4:

DerR(S) ∼= HomS(ΩS/R, S) = HomS1×S2(ΩS1/R × ΩS2/R, S1 × S2)

∼= HomS1(ΩS1/R, S1)×HomS2(ΩS2/R, S2) ∼= DerR(S1)×DerR(S2)

The result follows by induction. �

For the end of this section, let k denote a �eld. The derivations that
we will consider now preserve a certain ideal I of an k-algebra R. These
special derivations form a submodule of Derk(R) and, we will see that they
represent the derivations of R/I in a nice way, if R is a polynomial ring or a
localization of a polynomial ring. Later, we will need this notion to actually
compute invariants.

De�nition 3.4.8. Let R be an k-algebra and I an ideal of R. A derivation
δ ∈ Derk(R) is called I-preserving if δ (I) ⊆ I. The set of all I-preserving
derivations is denoted by:

DI(R) = {δ ∈ Derk(R) | δ (I) ⊆ I}

Note: DI(R) is a submodule of Derk(R) and we always have: I Derk(R) ⊆
DI(R).

The inclusion mentioned in the de�nition can be both: strict or an equal-
ity of submodules:

Example 3.4.9. Let R = k[x, y].

a) Set I = 〈x〉, then we may look for a nice representation of all I-
preserving derivations:
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� The partial derivation ∂
∂y is I-preserving: if gx ∈ I, then

∂
∂y (gx) =

x ∂
∂y (g) ∈ I.

� The derivation x ∂
∂x is also I-preserving.

Now let δ ∈ DI(R), then δ(x) ∈ I. Since we know that Derk(R) =
R ∂
∂x ⊕R

∂
∂y by Example 3.4.1, we may write δ = g1

∂
∂x + g2

∂
∂y . Hence,

we obtain: δ(x) = g1 is in I. Therefore, δ ∈ 〈x ∂
∂x ,

∂
∂y 〉 and altogether:

DI(R) = 〈x ∂
∂x
,
∂

∂y
〉R ) I Derk(R),

where the strict inequality holds, since ∂
∂y is not in I Derk(R).

b) Set m = 〈x, y〉. Then we actually get an equality:

Dm(R) = mDerk(R)

Therefore, consider δ ∈ Dm(R) ⊆ Derk(R). Then we may write δ =
g1

∂
∂x + g2

∂
∂y . Since δ is m-preserving, we obtain:

g1 = δ(x) ∈ m

g2 = δ(y) ∈ m

Hence, δ ∈ mDerk(R).

The next proposition shows that minimal primes in reduced rings are
preserved by any derivation. This is in particular interesting, if we have
�nitely many minimal primes, as we will see in Section 4.4.

Proposition 3.4.10. Let S be a reduced algebra over a ring R and δ any
derivation in DerR(S). Then δ leaves any minimal prime ideal P of S in-
variant:

δ ∈ DP (S) for any P ∈ Min(S)

Proof. See [CL91, p. 614]. �

Now that we have seen some examples, we focus on the representation-
property of I-preserving derivations. This will be an identi�cation, which
allows us to represent the derivations of R/I as a quotient of DI(R).

Lemma 3.4.11. Let k be a �eld and R an k-algebra so that Ω1
R/k is free and

I an ideal of R. Then we have an isomorphism:

Derk(R/I) ∼= DI(R)/I Derk(R)
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Proof. The proof is a generalization of [BS95, Lemma 2.1.2].
We can write Ω1

R/k =
⊕

iRdxi. Hence, we get for the dual: Derk(R) =⊕
iR

∂
∂xi

, where ∂
∂xi

denotes the dual basis, satisfying the property:

∂

∂xi
(xj) =

{
1, i = j

0, i 6= j

De�ne the map

ϕ : DI(R) −→ Derk(R/I)

δ 7−→ δ,

where δ(x) = δ(x). Then ϕ is well-de�ned since for any I-preserving deriva-
tion δ, the map δ is a derivation from R/I to R/I.
Let δ ∈ Ker(ϕ), then δ(r) ∈ I, for any r ∈ R. Since Derk(R) is free, we can
write: δ =

∑
i ci

∂
∂xi

, where ci ∈ R. Hence, ci = δ(xi) ∈ I and therefore,
δ ∈ I Derk(R). For the converse direction, the same argument applies and
we get: Ker(ϕ) = I Derk(R).
Now it is left to show that ϕ is surjective. From Proposition 3.1.11, we get
an exact sequence:

0 M R/I ⊗R Ω1
R/k Ω1

R/I/k 0,

where M denotes the image of I/I2. If we apply HomR(−, R/I), we obtain
the exact sequence:

0 Derk(R/I) Derk(R,R/I) HomR(M,R/I)
β

The map β sends a derivation δ to its restriction on I: δ|I . Note that we
used:

HomR(R/I ⊗R Ω1
R/k, R/I) = HomR(Ω1

R/k,HomR(R/I,R/I))

= HomR(Ω1
R/k, R/I)

= Derk(R,R/I)

The sequence 0 → I → R → R/I → 0 is also exact and if we apply
HomR(Ω1

R/k,−), we get another exact sequence:

Derk(R) Derk(R,R/I) Ext1
R(Ω1

R/k, I),
φ

where φ sends a derivation δ to the derivation δ. The module Ext1
R(Ω1

R/k, I)

is 0, since Ω1
R/k is free and thus, φ is surjective.
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If we combine this with the above sequence, we get the following diagram:

0 DI(R) Derk(R)

0 Derk(R/I) Derk(R,R/I) HomR(M,R/I)

ϕ φ

β

Let now γ be a derivation in Derk(R/I). Then we can consider γ as derivation
in Derk(R,R/I) and γ ∈ Ker(β). Hence, γ|I = 0. Since φ is surjective, there
is a δ ∈ Derk(R) so that φ(δ) = γ. But then δ is actually I-preserving, since
for x ∈ I we have: δ(x) = φ(δ)(x) = γ(x) = 0. Therefore, δ(x) ∈ I. This
shows that ϕ is surjective. �

As a consequence, we get that localization and I-preserving derivations
commute:

Lemma 3.4.12. Let k be a �eld and R a Noetherian k-algebra so that Ω1
R/k

is free of �nite rank and let W be a multiplicatively closed subset of R. Then
we have:

W−1 DI(R) ∼= DW−1I(W
−1R)

Proof. From Lemma 3.4.11, we get the exactness of

0→ I Derk(R)→ DI(R)→ Derk(R/I)→ 0 (3.4)

If we localize this by W−1, we can apply Proposition 3.4.2 and obtain the
exact sequence:

0→W−1I Derk(W
−1R)→W−1 DI(R)→ Derk(W

−1R/W−1I)→ 0 (3.5)

Since Ω1
W−1R/k = W−1Ω1

R/k by Lemma 3.1.16, we get that Ω1
W−1R/k is also

free and thus, the following sequence is exact:

0→W−1I Derk(W
−1R)→ DW−1I(W

−1R)→ Derk(W
−1R/W−1I)→ 0

(3.6)

We have a map of exact sequences from (3.4) to (3.6). Hence, this induces
a map of exact sequences from (3.5) to (3.6). By the Snake Lemma, we get
the isomorphism: W−1 DI(R) ∼= DW−1(W−1R). �
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4. Invariants

Invariants are a good tool to state numerical characterizations of abstract
objects and we are interested in computing them. We want to do this on
"easy" rings: quotients of localized polynomial rings over a �eld k. After-
wards, we wish to extend the results to more complicated rings, like (formal)
analytic algebras over L, where L/k is a �eld extension. Therefore, we need
to show that the invariants that we treat in this chapter, behave well under
completion and �eld extension. Since invariants are de�ned via the length
of a module, we will show in Section 4.1, that the length behaves well with
respect to mentioned operations.
Section 4.2 focuses on the delta invariant. This is the "most basic" invariant,
that we consider and other invariants are related to it. In Section 4.3, we
�rst look at a special ideal that connects the normalization S and the ground
ring S: the conductor. Then we focus on the multiplicity of the conductor:
an invariant, de�ned in terms of the conductor. The last Section, 4.4, treats
the Deligne number. This is an invariant which relates derivations of S and
derivations of S.

4.1 The preservation of length

This short section collects results about the preservation of the length of a
module under certain operations. We will show that under suitable assump-
tions, the length is preserved under completion and extension of the ground
�eld. Since invariants are de�ned via the length, these results are used in the
following sections to show that invariants are stable under the mentioned
operations.

All operations we consider, are �at. Hence, it is not surprising, that the
results in this section mainly rely on the following:

Proposition 4.1.1. Let R→ S be a �at local homomorphism of local rings
and let m be the maximal ideal of R, then for any R-module M , we have:

lengthS(M ⊗R S) = lengthS(S/mS) · lengthR(M)

Proof. See [Stacks, Tag 02M1]. �
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We will also need the following fact on the length of quotients by maximal
ideals:

Lemma 4.1.2. Let R be a ring and m a maximal ideal of R. Then:

lengthR(R/m) = 1

Proof. Any R-submodule of R/m is induced by an R-submodule of R, an
ideal, containing m. This can only be m or R, hence R/m only has trivial
R-submodules. �

We know from Section 1.4, that the completion of a local ring is again
a local ring and that the maximal ideal maps to the maximal ideal of the
completion. Therefore, we are able to apply Proposition 4.1.1 in this case:

Proposition 4.1.3. Let R be a local Noetherian ring, q an ideal of R and M
a �nitely generated R-module. Then q-adic completion preserves the length
of M :

length
R̂

(M̂) = lengthR(M)

Proof. The map R → R̂ is a �at local homomorphism of local rings by
Proposition 1.4.19 and Corollary 1.4.13. Hence, we may apply Proposition
4.1.1 and Theorem 1.4.11 to get:

length
R̂

(M̂) = length
R̂

(M ⊗R R̂) = length
R̂

(R̂/mR̂) · lengthR(M),

where m denotes the maximal ideal of R. Since mR̂ = m̂ is the maximal
ideal of R̂, the module R̂/mR̂ has length 1 by Lemma 4.1.2. This shows the
equality. �

We also want such a result, when we extend the ground �eld. But if we
start with a local k-algebra S and L is the extension �eld of k, the L-algebra
S ⊗k L may not be local anymore and we cannot apply Proposition 4.1.1.
Therefore, we �rst extend the �eld and then localize at a maximal ideal of
S ⊗k L. We will obtain a �at local homomorphism of local rings and the
length will be preserved:

Proposition 4.1.4. Let k be a �eld and S a local k-algebra with maximal
ideal m and residue �eld k. If L is an extension �eld of k, then:

a) The ideal n = m(S ⊗k L) is a maximal ideal of S ⊗k L.

b) Set T = (S ⊗k L)n, then for any S-module M , we have:

M ⊗S T = (M ⊗k L)n

c) For any S-module M , the length is preserved under tensoring by T :

lengthT (M ⊗S T ) = lengthS(M)
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d) The dimension does not change if we pass to T :

dimT = dimS

Proof. To prove part a), we apply Lemma A.2.1:

(S ⊗k L)/n = S/m⊗k L = k ⊗k L = L

Therefore, n is maximal in S ⊗k L. For part b), consider:

M ⊗S T = M ⊗S (S ⊗k L)n

= M ⊗S (S ⊗k L)⊗(S⊗kL) (S ⊗k L)n

= (M ⊗k L)⊗(S⊗kL) (S ⊗k L)n = (M ⊗k L)n

Finally, we prove the preservation of the length and the dimension: the map
ϕ : S → T is a composition of the �at maps: S → (S ⊗k L) → (S ⊗k L)n
and hence, �at. Applying part a), we obtain that ϕ(m) = nn and therefore,
it is a �at local homomorphism of local rings. Now we get for an S-module
M by Proposition 4.1.1:

lengthT (M ⊗S T ) = lengthT (T/mT ) · lengthS(M)

But mT = ϕ(m)T = nn and thus, the length of T/mT is 1 by Lemma 4.1.2.
We also get that dimT = dimS + dimT/mT by Proposition A.2.5. As
mentioned before, mT is the maximal ideal of T and thus, dimT/mT =
0. �

4.2 Delta invariant

The �rst invariant we consider, is the delta invariant, denoted by δ. It
measures, how "far away" a curve S is from its normalization S: The delta
invariant has value 0 if and only if S is integrally closed. In the case of
curve singularities, it is also closely connected to the Milnor number µ by
the formula µ = 2δ − r + 1, where r denotes the number of branches of
the curve singularity. For the proof, we refer to [BG80, Proposition 1.2.1].
In Section 4.3, we will also see, how δ is related to the multiplicity of the
conductor.
In this section, we will give the de�nition of the delta invariant and we will
show that it is preserved under completion and extension of the ground �eld.

De�nition 4.2.1. Let S be a reduced Noetherian ring of dimension 1 with
normalization S. Then the delta invariant of S is de�ned by:

δS = lengthS(S/S)

By de�nition, it is clear that δS = 0 if and only if S = S.

68



For illustration, let us look at an example. Therefore, we will need an
exact sequence: Let R be a ring and I = I1 ∩ I2 an intersection of ideals,
then:

0 R/I R/I1 ×R/I2 R/(I1 + I2) 0

is exact. This will be helpful when computing the delta invariant:

Example 4.2.2. Let k be a �eld and R = k[x, y]/〈xy〉. Then R has two
minimal primes: P1 = 〈x〉 and P2 = 〈y〉, by Example 1.1.10. We have also
seen, that R = R/P1 × R/P2 in Example 2.1.16. Hence, we can apply the
above exact sequence and use that P1 ∩ P2 = 0, since R is reduced:

0 R R R/(P1 + P2) 0

So we obtain: R/R ∼= R/(P1 + P2) = R/〈x, y〉. Since 〈x, y〉 is a maximal
ideal of R, we may apply Lemma 4.1.2 and derive for the delta invariant:

δR = lengthR(R/R) = lengthR(R/〈x, y〉) = 1

Now we prove that the delta invariant is compatible with completion.
Because of this, we can, for example, compute the delta invariant of a formal
analytic algebra over a local algebra essentially of �nite type instead.

Proposition 4.2.3. If S is a reduced excellent local ring of dimension 1 and
m the maximal ideal of S, then the delta invariant is stable under m-adic
completion:

δ
Ŝ

= δS

Proof. Since S is reduced and excellent, Theorem 2.4.14 states, that S is

normalization-�nite and we can apply Corollary 1.4.10 to obtain: (̂S/S) ∼=
Ŝ/Ŝ. Another application of Theorem 2.4.14 yields: (̂S/S) ∼= Ŝ/Ŝ. Hence,
we get the equality by 4.1.3:

δ
Ŝ

= length
Ŝ

(Ŝ/Ŝ) = length
Ŝ

(Ŝ/S) = lengthS(S/S) = δS

Note that Ŝ is reduced by Theorem 2.4.14 and of dimension 1 by Proposition
1.4.20. �

When we deal with algebras over �elds and extend the ground �eld, then,
under suitable assumptions, we get a similar statement to 4.2.3, as long as
the ground �eld is perfect:

Proposition 4.2.4. Let S be a reduced excellent local algebra of dimension
1 over a perfect �eld k with maximal ideal m, so that S/m = k. If L/k is a
�eld extension, set n = m(S⊗k L) and T = (S⊗k L)n. Suppose, that S⊗k L
is Noetherian, then the delta invariant is stable under passing to T :

δT = δS
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Proof. First, note that n is a maximal ideal of S ⊗k L by Proposition 4.1.4.
The L-algebra S ⊗k L is reduced by Lemma 1.3.4, since L/k is separable.
As a localization, also T is reduced and dimT = dimS = 1 by Proposition
4.1.4. Now consider the normalization of T and apply Proposition 2.1.17,
Theorem 2.5.4 and Proposition 4.1.4:

T = (S ⊗k L)n = (S ⊗k L)n = (S ⊗k L)n = S ⊗S T

Hence, we can deduce, using the �atness of T over S, Lemma A.2.1 and
Proposition 4.1.4:

δT = lengthT (T/T )

= lengthT (S ⊗S T/S ⊗S T )

= lengthT (S/S ⊗S T )

= lengthS(S/S)

= δS �

Remark 4.2.5. We mention shortly, which kind of rings satisfy the assump-
tions of Proposition 4.2.4. In particular, we need that S ⊗k L is Noetherian.
Therefore, let k denote a perfect �eld.

� Let S be a local algebra, essentially of �nite type of dimension 1,
satisfying S/m = k. Then S is excellent by Remark 2.4.13. The L-
algebra S ⊗k L is again an algebra essentially of �nite type by Lemma
A.4.1. Hence, S ⊗k L is Noetherian.
Examples for algebras like S are given by quotients of:

k[x1, . . . , xn]〈x1,...,xn〉

4.3 Conductor

The conductor of a reduced ring S, denoted CS , is the module quotient of
S by S. We will see that it is an ideal of S and it combines all elements
that multiply S �into� S. The conductor can also be seen as ideal of the
normalization and it is even maximal with the property of being an ideal in
S and S. We will show that natural operations like localization, completion
and extension of the ground �eld, do not harm CS : it commutes with these.
After this, we will de�ne the multiplicity of the conductor, a new invariant,
that is related to the delta invariant and that will also behave well with
respect to completion and extension of the ground �eld.
Since we want to compute the conductor and themultiplicity of the conductor
in Chapter 5, we give an alternative form of CS at the end of this section.
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De�nition 4.3.1. Let S be a reduced ring with normalization S. Then the
conductor of S, denoted by CS , is the module quotient:

CS = S :Q(S) S = {x ∈ Q(S) |xS ⊆ S}

Remark 4.3.2. Let S be a reduced ring and CS the conductor.

� We know that CSS ⊆ S, therefore CS = CS · 1 ⊆ S and thus, the
conductor is an ideal of S. Now we can also derive:

CS = S :S S = AnnS(S/S)

and: CS = S if and only if S is integrally closed.

� One can also show, that CS is an ideal of S:

SCSS ⊆ CSS ⊆ S

Hence, SCS ⊆ CS .

� The conductor is the largest common ideal of S and S: if I is another
ideal of S and S, then we can deduce:

IS ⊆ I ⊆ S

Hence, I ⊆ CS .

Example 4.3.3. Let R = k[x, y]/〈xy〉, where k denotes a �eld. By Example
4.2.2, we know that R/R ∼= R/m, where m = 〈x, y〉. Then we can easily
compute the conductor:

CR = AnnR(R/R) = AnnR(R/m) = m

In particular, we have seen, that CR contains non-zero divisors. This is
a consequence of R being normalization-�nite in the example.

Lemma 4.3.4. Let S be a reduced Noetherian ring and CS its conductor.
Then CS contains a non-zero divisor if and only if S is normalization-�nite.

Proof. See [HS06, p. 238]. �

Another useful description of the conductor that we will need later, can
be derived from the following lemma:

Lemma 4.3.5. Assume that S is a reduced ring and I, J are S-submodules
of Q(S), so that I contains a non-zero divisor g of S. Then the map

HomS(I, J) −→ J :Q(S) I

ϕ 7−→ ϕ(g)

g

is independent of the choice of g and an isomorphism of S-modules.
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Proof. This is [GLS10, Lemma 3.1]. �

Corollary 4.3.6. Let S be a reduced ring and CS its conductor. Then we
have an isomorphism:

HomS(S, S) ∼= CS

Proof. This is an application of Lemma 4.3.5. �

We shall now start to examine the behaviour of the conductor with re-
spect to localization, completion and extension of the ground �eld:

Proposition 4.3.7. Let S be a reduced normalization-�nite Noetherian ring
and W a multiplicatively closed subset of S. Then the conductor is stable
under localization:

CW−1S
∼= W−1CS

Proof. This is a consequence of Proposition 2.1.17, Proposition A.2.2 and
Corollary 4.3.6:

CW−1S
∼= HomW−1S(W−1S,W−1S)

= HomW−1S(W−1S,W−1S)

∼= W−1 HomS(S, S)

∼= W−1CS �

A similar argumentation shows, that the conductor also commutes with
completion. For this, we must assume that we have an excellent ring, since
we want to swap completion and normalization.

Proposition 4.3.8. Let S be a reduced excellent semi-local ring and m the
Jacobson radical of S. If ̂ denotes the m-adic completion, we have:

C
Ŝ
∼= ĈS

Proof. By Theorem 2.4.14 we know, that S is normalization-�nite, Ŝ is re-

duced and that Ŝ = Ŝ. Hence, we may apply Theorem 1.4.11, Proposition
A.2.2 and Corollary 4.3.6:

C
Ŝ
∼= Hom

Ŝ
(Ŝ, Ŝ)

∼= Hom
S⊗S Ŝ

(S ⊗S Ŝ, S ⊗S Ŝ)

∼= HomS(S, S)⊗S Ŝ
∼= ĈS �

The last operation, which is compatible with the conductor, is the ex-
tension of the ground �eld. The idea of the proof is similar to the above
propositions.
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Proposition 4.3.9. Let S be a reduced excellent k-algebra, where k denotes a
perfect �eld. Assume L/k is a �eld extension, then we have an isomorphism:

CS⊗kL
∼= CS ⊗k L

Proof. The ring S is reduced and k is perfect. Hence, we get by Lemma
1.3.4 that S ⊗k L is reduced. Applying Theorem 2.5.4 and Corollary A.2.4,
we can deduce:

CS⊗kL
∼= HomS⊗kL(S ⊗k L, S ⊗k L)

∼= HomS⊗kL(S ⊗k L, S ⊗k L)

∼= HomS(S, S)⊗k L
∼= CS ⊗k L �

Now we focus on a new invariant, that was mentioned at the beginning
of this section and that is de�ned in terms of the conductor:

De�nition 4.3.10. Let S be a reduced Noetherian ring of dimension 1
and CS the conductor of S. The length of S/CS as S-module is called
multiplicity of the conductor and is denoted by cS .

There is a simple connection to the delta invariant:

Remark 4.3.11. Let S be as above, CS the conductor and cS the multiplic-
ity of the conductor. Then there is an isomorphism of S-modules:

S/S ∼= (S/CS)
/

(S/CS)

Hence, we obtain:

cS = lengthS(S/CS)

= lengthS(S/S) + lengthS(S/CS)

= δS + lengthS(S/CS)

If S is also local, then there are more relations to other invariants and one
can even derive a Gorenstein test: The ring S is Gorenstein if and only if,
we have an equality: cS = 2 · lengthS(S/CS). For details we refer to [HS06,
Section 12.2].

We will now show, that the multiplicity of the conductor behaves well
under completion and �eld extension. Most of the work has already been
done, it was shown that the conductor behaves well with respect to this
operations.

Proposition 4.3.12. For a reduced excellent local ring S of dimension 1,
let m denote the maximal ideal. The conductor multiplicity is stable under
m-adic completion:

c
Ŝ

= cS
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Proof. First, note that Ŝ is reduced and of dimension 1. This is a conse-
quence of Proposition 1.4.20 and Theorem 2.4.14.
Due to the assumptions on S, we may apply Theorem 2.4.14, Proposition
4.3.8 and Proposition 1.4.14 to obtain:

Ŝ/C
Ŝ
∼= Ŝ/ĈS = ̂(S/CS)

Since S is normalization-�nite, we get by Proposition 4.1.3 that:

cS = lengthS(S/CS) = length
Ŝ

(Ŝ/C
Ŝ

) = c
Ŝ

�

Proposition 4.3.13. Let S be a reduced excellent local algebra of dimension
1 over a perfect �eld k with maximal ideal m, so that S/m = k. If L/k is a
�eld extension, set n = m(S⊗k L) and T = (S⊗k L)n. Suppose, that S⊗k L
is Noetherian, then the multiplicity of the conductor is stable under passing
to T :

cT = cS

Proof. Like in Proposition 4.2.4, we can derive that T is reduced, dimT = 1
and T = S ⊗S T . The conductor behaves the same way:

CT = C(S⊗kL)n
∼= (CS⊗kL)n ∼= (CS ⊗k L)n = CS ⊗S T

This is a consequence of Propositions 4.3.7, 4.3.9 and 4.1.4. Note, that
S⊗kL is reduced by Lemma 1.3.4 and that S⊗kL is normalization-�nite: S
is normalization-�nite and by Theorem 2.5.4, we can write S ⊗k L = S⊗kL,
which is �nitely generated over S ⊗k L.
Now we can derive, using Lemma A.2.1 and again Proposition 4.1.4:

cT = lengthT (T/CT )

= lengthT (S ⊗S T/CS ⊗S T )

= lengthT (S/CS ⊗S T )

= lengthS(S/CS)

= cS �

Our last consideration in this section aims for �nding a form for the con-
ductor of a reduced Noetherian normalization-�nite ring S, which depends
on the minimal associated primes and the S-module generators of S. In the
proof, we will make use of the following fact:

Lemma 4.3.14. Let R be a ring, M an arbitrary R-module and N a �nitely
generated R-module with generators: n1, . . . , nk. Then:

M :R N =
k⋂
i=1

(M :R ni)
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Proof. Let r ∈ R. Then rN ⊆ M if and only if rni ∈ M for any generator
of N . �

De�nition 4.3.15. Let S be a reduced, Noetherian ring with minimal
primes P1, . . . , Pr. The map ∆ : S → S/P1 × · · · × S/Pr, de�ned by
∆(x) = (x, . . . , x) is called diagonal embedding.

Since S is reduced and the intersection of all minimal primes is the nil-
radical by Proposition 1.2.2, ∆ is indeed an injective ring homomorphism:

Ker(∆) =
r⋂
i=1

Pi = N(S) = 0

With Proposition 2.1.15 and ∆, we can identify S as subring of the normal-
ization:

S ∼= ∆(S) ⊆ S/P1 × · · · × S/Pr ⊆ S/P1 × · · · × S/Pr = S

This allows us to "test" whether an element of S already lies in S in the
next theorem.

Theorem 4.3.16. Let S be a reduced Noetherian ring with minimal primes
P1, . . . , Pr. Suppose, we have U1, . . . , Ur E S and d1, . . . , dr ∈ S such that

di 6= 0 in S/Pi and S/Pi = 1
di
Ui ⊆ Q(S/Pi) as an S-module. Also assume,

that there are presentations as S-algebras: S/Pi = Si/Ji, where Si = S[ti]
and Ji E Si.
Then the conductor CS of S is the ideal:

r⋂
i=1

Pi + di
⋂
j 6=i

Pj

 :S Ui

 E S.
Proof. First, we show that Ji ∩ S = Pi for all i. Consider the commutative
diagram:

S

S/Pi S/Pi = Si/Ji

ϕi
π

where ϕi is the map: ϕi : S → Si/Ji, x 7→ x. From this, we obtain:

Ji ∩ S = Ker(ϕi) = Ker(π) = Pi.

Now we take a look at generators of S as an S-module. Therefore, let Ui =

〈uil , l = 1, . . . , ki〉, then by assumption S/Pi = 1
di
Ui =

〈
uil
di

, l = 1, . . . , ki

〉
S
.

Hence, the S-module S = S/P1 × · · · × S/Pr is generated by(
0, . . . , 0,

uil
di
, 0, . . . , 0

)
, i = 1, . . . , r, l = 1, . . . , ki
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Applying Lemma 4.3.14, we can conclude for the conductor:

CS = S :S S = ∆(S) :S S

=
r⋂
i=1

ki⋂
l=1

∆(S) :S

〈(
0, . . . , 0,

uil
di
, 0, . . . , 0

)〉
S

(4.1)

Now focus on the quotient of a single generator. Therefore let f ∈ S, then:

f ∈ ∆(S) :S

〈(
0, . . . , 0,

uil
di
, 0, . . . , 0

)〉
S

⇔f ·
(

0, . . . , 0,
uil
di
, 0, . . . , 0

)
∈ ∆(S)

⇔∃ g ∈ S :

(
0, . . . , 0, f

uil
di
, 0, . . . , 0

)
= ∆(g)

⇔∃ g ∈ S :

 g = 0 in S/Pj = Sj/Jj for j 6= i and

g = f
uil
di

in S/Pi = Si/Ji

Since di is non-zero in S/Pi, we have an equivalence:

g = f
uil
di
∈ Q(S/Pi)⇔ dig = fuil ∈ S/Pi

Hence, we can continue the equivalence and make use of what we have shown
�rst:

⇔∃ g ∈ S :

{
g ∈ Jj ∩ S for j 6= i and

fuil − dig ∈ Ji ∩ S

⇔∃ g ∈ S :

{
g ∈ Pj for j 6= i and

fuil − dig ∈ Pi

⇔∃ g ∈ S : g ∈
⋂
j 6=i

Pj and fuil − dig ∈ Pi

⇔fuil ∈ Pi + di
⋂
j 6=i

Pj

⇔f ∈

Pi + di
⋂
j 6=i

Pj

 :S uil

Now combine (4.1), the equivalences and Lemma 4.3.14 to obtain the desired
form of the conductor:

CS =
r⋂
i=1

ki⋂
l=1

Pi + di
⋂
j 6=i

Pj

 :S uil

 =
r⋂
i=1

Pi + di
⋂
j 6=i

Pj

 :S Ui


�
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4.4 The Deligne number

Before we can introduce the Deligne number, we have to extend derivations
from an k-algebra S to its normalization S. Therefore, we will use a famous
result of Seidenberg, which allows us to do so if S is an integral domain. To
achieve this also in the reduced case, we �rst embed Derk(S) into the prod-
uct

∏
Derk(S/P ), where P runs over all minimal primes of S. After this, we

extend elements of this product componentwise to
∏

Derk(S/P ) = Derk(S),
so that we have an injection Derk(S) ↪→ Derk(S). The Deligne number will
then be de�ned in terms of the length of Derk(S)/Derk(S).
Like for the other invariants, we will show that the Deligne number is stable
under completion and �eld extension.
The second part of the section deals with the case, in which S is an algebra,
essentially of �nite type over a �eld k. We will derive a formula, that allows
us to compute the Deligne number in Chapter 5.

As mentioned above, the �rst step to extend derivations from Derk(S) to
Derk(S) is an injection Derk(S) ↪→

∏
Derk(S/P ). Such a map is generated

by the following lemma.

Lemma 4.4.1. Let k be a �eld and S a reduced k-algebra with �nitely many
minimal primes: P1, . . . , Pr. Let I =

⋂r−1
i=1 Pi, then we have an injective

map:

ϕ : Derk(S) −→ Derk(S/I)×Derk(S/Pr)

δ 7−→ (δI , δPr)

Proof. The map ϕ is well de�ned: let δ ∈ Derk(S), then we may apply
Proposition 3.4.10 and obtain, that δ(Pi) ⊆ Pi for any i. As a consequence,
δ(I) ⊆ I and δ(Pr) ⊆ Pr. Hence, the maps:

δI : S/I → S/I

x→ δ(x)

δPr : S/Pr → S/Pr

x→ δ(x)

are well de�ned derivations.
For showing, that ϕ is injective, let δ ∈ Ker(ϕ). Then we have for x ∈ S:
δ(x) ∈ I ∩ Pr =

⋂r
i=1 Pi = N(S) = 0, since S is reduced. Hence, δ is the

zero map and ϕ is injective. �

Remark 4.4.2. Note, that the ring S/I is again reduced, since
√
I =⋂r−1

i=1

√
Pi =

⋂r−1
i=1 Pi = I and S/I has the minimal primes P1, . . . , Pr−1

by Lemma 1.1.9. We can therefore apply Lemma 4.4.1 inductively, which
yields a sequence of injective maps:

Derk(S) ↪→ Derk(S/
r−1⋂
i=1

Pi)×Derk(S/Pr) ↪→ . . . ↪→
r∏
i=1

Derk(S/Pi)
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If we compose all these maps, we get an embedding:

∆D : Derk(S) −→
r∏
i=1

Derk(S/Pi)

δ 7−→ (δP1 , . . . , δPr)

Inspired by the diagonal submodule that is generated by the image of ∆D,
we call the map diagonal D-embedding.

The second step to extend derivations to the normalization relies on a
result of Seidenberg. We have to focus on algebras of characteristic 0 now:

Theorem 4.4.3. Let k be a �eld of characteristic 0 and S an k-algebra.
Suppose, S is a Noetherian integral domain with quotient �eld K and δ :
K → K is an k-derivation. If δ(S) ⊆ S, then we have: δ(S) ⊆ S.

Proof. The proof is a combination of [Sei66, p. 171] and [Sei66, Theorem
C]. �

We can now combine this result and the above construction of the diag-
onal D-embedding to obtain the injection, we were looking for:

Proposition 4.4.4. Let k be a �eld of characteristic 0 and S a reduced
Noetherian k-algebra. Then, there is an embedding:

Derk(S) ↪→ Derk(S)

So we can uniquely extend any derivation from S to a derivation of S.

Proof. Let P be a minimal associated prime of S and γ ∈ Derk(S/P ). We
can extend γ uniquely to a derivation γe ∈ Derk(Q(S/P )) by Lemma 3.1.3.
Since S/P is a Noetherian integral domain over k, we may apply Theo-
rem 4.4.3 and obtain that γe(S/P ) ⊆ S/P . Hence, γe ∈ Derk(S/P ). The
extension γe is unique, therefore we get an injective map Derk(S/P ) ↪→
Derk(S/P ). Now we do this in every component and obtain an embedding:

Φ :
∏

P∈Min(S)

Derk(S/P ) ↪→
∏

P∈Min(S)

Derk(S/P ) = Derk(S)

Note, that the equality
∏

Derk(S/P ) = Derk(S) is a consequence of Propo-
sition 3.4.7 and Proposition 2.1.15. We obtain the desired injection by com-
posing ∆D and Φ. �

Now we are able to de�ne the invariant:

De�nition 4.4.5. Let k be a �eld of characteristic 0 and S a reduced
Noetherian k-algebra of dimension 1.
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a) Call mS = lengthS(Derk(S)/Derk(S)) the colength of derivations
(along the normalization) of S.

b) The Deligne number eS is de�ned by: eS = 3δS − mS , where δS
denotes the delta invariant from Section 4.2.

Before we focus on the computation of the Deligne number, we prove
that it is stable under completion and extension of the ground �eld.

Theorem 4.4.6. Let k be a �eld of characteristic 0 and S a reduced ex-
cellent local algebra of dimension 1 over k so that Ω̃1

S/k exists. Denote by
m the maximal ideal of S, then the Deligne number is stable under m-adic
completion:

e
Ŝ

= eS

Proof. First of all, we may apply Proposition 4.2.3 and get that the delta
invariant δS of S is stable under m-adic completion. Since eS = 3δS −mS ,
we only have to show that the colength of derivations is stable.

Since the universally �nite module of di�erentials Ω̃1
S/k exists by assump-

tion, we can apply Proposition 3.4.5 to get:

Derk(Ŝ) ∼= D̂erk(S)

The algebra S is normalization-�nite by Theorem 2.4.14. Hence, S is a
semi-local Noetherian ring by Proposition 2.2.8 and Lemma 2.2.7. Applying
Corollary 3.3.14, we also get the existence of Ω̃1

S/k
. Now denote by n the

Jacobson radical of S. By Proposition 3.4.5, we get for the n-adic completion:

Derk(Ŝ
n
) ∼= D̂erk(S)

n

Since the n-adic completion and the m-adic completion of S-modules coincide
by Proposition 2.2.9, we get the equalities:

Ŝ
n

= Ŝ, Derk(Ŝ
n
) = Derk(Ŝ) and D̂erk(S)

n

= D̂erk(S)

Thus, we have the isomorphism

Derk( Ŝ ) ∼= D̂erk(S)

Note, that the derivation module Derk(S) is a �nitely generated S-module,
since it is the dual of Ω̃1

S/k
. The map S → S is �nite. Hence, Derk(S) is also

a �nitely generated S-module.
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Now we combine these results with Theorem 2.4.14, Corollary 1.4.10 and
Proposition 4.1.3:

m
Ŝ

= length
Ŝ

( Derk( Ŝ )/Derk(Ŝ) )

= length
Ŝ

( Derk( Ŝ )/Derk(Ŝ) )

= length
Ŝ

( D̂erk(S)/D̂erk(S) )

= length
Ŝ

( (Derk(S)/Derk(S))̂ )

= lengthS( Derk(S)/Derk(S) )

= mS �

Note that, like in the other stability results, we have that Ŝ is reduced
and of dimension 1 and, concerning the next theorem, the ring T is reduced
and of dimension 1.
For the extension of the ground �eld, we need the assumption that the mod-
ule of Kähler di�erentials is �nitely generated.

Theorem 4.4.7. Let S be a reduced excellent local algebra of dimension 1
over a �eld k of characteristic 0. Denote by m the maximal ideal of S and
suppose that S/m = k and that Ω1

S/k is �nitely generated. If L/k is a �eld

extension, set n = m(S ⊗k L) and T = (S ⊗k L)n. Suppose, that S ⊗k L is
Noetherian, then the Deligne number is stable under passing to T :

eT = eS

Proof. The delta invariant δS is stable under passing to T by Proposition
4.2.4. So we focus on the colength of derivations mS . By assumption, we
know that Ω1

S/k is �nitely generated over S. Hence, Ω1
(S⊗kL)/L = Ω1

S/k⊗kL is
�nitely generated over S⊗kL. The ring S⊗kL is Noetherian by assumption,
so we may apply Proposition 3.4.2 and obtain:

DerL(T ) = DerL((S ⊗k L)n) ∼= DerL(S ⊗k L)n

If we also apply Proposition 3.4.6 and Proposition 4.1.4, we get:

DerL(T ) ∼= (Derk(S)⊗k L)n = Derk(S)⊗S T

Now we want to derive a similar isomorphism for DerL(T ): note, that the
�eld k is perfect by Lemma 1.3.3 and since S is reduced, also S ⊗k L is
reduced by Lemma 1.3.4. Hence, we are able to apply Proposition 2.1.17 to
get: (S ⊗k L)n = (S ⊗k L)n. Now, taking Theorem 2.5.4 into account, we
can deduce:

DerL(T ) = DerL((S ⊗k L)n) = DerL((S ⊗k L)n) = DerL((S ⊗k L)n)
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Since S is normalization-�nite and Ω1
S/k is �nitely generated, we can use

Lemma 3.1.15 and obtain that Ω1
S/k

is �nitely generated over S. Then

Ω1
(S⊗kL)/L

= Ω1
S/k
⊗kL is also �nitely generated - over S⊗kL. The ring S⊗kL

is the normalization of S ⊗k L and if we again use, that S is normalization-
�nite, we can derive that S ⊗k L is also normalization-�nite and S ⊗k L
is Noetherian by Lemma 2.2.7. We are now able to apply the propositions
3.4.2, 3.4.6 and 4.1.4:

DerL(T ) = DerL((S ⊗k L)n)

∼= DerL(S ⊗k L)n
∼= (Derk(S)⊗k L)n

= Derk(S)⊗S T

Hence, we can deduce with another application of Proposition 4.1.4:

mT = lengthT (DerL(T )/DerL(T ))

= lengthT (Derk(S)/Derk(S)⊗S T )

= lengthS(Derk(S)/Derk(S))

= mS �

For later computations, we wish to reduce the extension of derivations to
the single-branch case. The embedding ∆D allows us to do so: we can state
a formula, which relates the total colength of derivations mS to the colength
of derivations of the branches mS/P and includes the cokernel of ∆D.

Proposition 4.4.8. Let S be a reduced Noetherian algebra of dimension 1
over a �eld k of characteristic 0, then we have the formula:

mS =
∑

P∈Min(S)

mS/P + lengthS(Coker(∆D))

Proof. The embedding Derk(S) ↪→ Derk(S) was de�ned as composition of
two injective maps in Proposition 4.4.4:

Derk(S)
∆D

−→
∏

P∈Min(S)

Derk(S/P )
Φ−→ Derk(S)

Hence, we can deduce for the colength of derivations:

mS = lengthS(Derk(S)
/ ∏
P∈Min(S)

Derk(S/P ))

+ lengthS(
∏

P∈Min(S)

Derk(S/P )
/

Derk(S))
(4.2)
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Taking Proposition 3.4.7 into account, we can use that the derivation module
Derk(S) factors:

Derk(S)
/ ∏

P∈Min(S)

Derk(S/P ) =
∏

P∈Min(S)

Derk(S/P )
/ ∏
P∈Min(S)

Derk(S/P )

∼=
∏

P∈Min(S)

(Derk(S/P )/Derk(S/P ))

Hence, we get a nice representation of the �rst summand of (4.2):

lengthS(Derk(S)
/ ∏
P∈Min(S)

Derk(S/P )) =
∑

P∈Min(S)

mS/P

Now, we wish to �nd a nice representation of the second summand. There-
fore, consider the exact sequence:

0 Derk(S)
∏

P∈Min(S)

Derk(S/P ) Coker(∆D) 0∆D

Then immediately:

lengthS(
∏

P∈Min(S)

Derk(S/P )
/

Derk(S)) = lengthS(Coker(∆D))

�

We would like to compute the Deligne number over quotients of localized
polynomial rings. With the stability results, we can then lift our computa-
tions to (formal) analytic algebras. To �nd a formula for the Deligne number
and the colength of derivations, we should take a closer look at the structure
of the cokernel of the diagonal D-embedding, since we have already stated a
formula containing the length of Coker(∆D) in Proposition 4.4.8.

Proposition 4.4.9. Let S be a localization of a polynomial ring over a �eld
k, I a radical ideal and I =

⋂r
i=1 Pi a decomposition into its minimal primes.

Then there is an exact sequence:

0 Derk(S/I) Derk(S/I
′)×Derk(S/Pr) . . .

. . . (DI′(S) + DPr(S))/(I ′ + Pr) Derk(S) 0,

ϕ ψ

ψ

where I ′ =
⋂r−1
i=1 Pi.
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Proof. The map

ϕ : Derk(S/I) −→ Derk(S/I
′)×Derk(S/Pr)

δ −→ (δI′ , δPr)

was already constructed in Lemma 4.4.1 and shown to be injective. We may
use the identi�cation from Lemma 3.4.11 to consider ϕ as map:

ϕ : DI(S)/I Derk(S) −→ DI′(S)/I ′Derk(S)×DPr(S)/Pr Derk(S)

δ 7−→ (δ, δ)

De�ne the map ψ by:

ψ : DI′(S)/I ′Derk(S)×DPr(S)/Pr Derk(S) −→ (DI′(S) + DPr(S))/(I ′ + Pr) Derk(S)

(δ, ε) 7−→ δ − ε

Then:

� ψ is well de�ned: For δ ∈ DI′(S) and ε ∈ DPr(S), it is clear that δ− ε
lies in DI′(S) + DPr(S).

Now let δ = δ̂ + δ′, where δ and δ̂ represent the same residue class in
DI′(S)/I ′Derk(S) and δ′ ∈ I ′Derk(S) ⊆ (I ′ + Pr) Derk(S). Similarly,
ε = ε̂ + ε′ with ε′ ∈ Pr Derk(S) ⊆ (I ′ + Pr) Derk(S). Then, δ − ε =
δ̂− ε̂+δ′−ε′ and δ′−ε′ ∈ (I ′+Pr) Derk(S), so δ−ε and δ̂− ε̂ represent
the same class in (DI′(S) + DPr(S))/(I ′ + Pr) Derk(S).

� ψ is surjective: Let δ + ε ∈ (DI′(S)+DPr(S))/(I ′+Pr) Derk(S). Then
δ ∈ DI′(S) and ε ∈ DPr(S). Hence, δ + ε is the image of (δ,−ε).

To get the exactness of the sequence, we only need to prove that Ker(ψ) ⊆
Im(ϕ). The other inclusion is clear by de�nition of the maps.

So let (δ, ε) ∈ Ker(ψ). It follows that δ− ε ∈ (I ′+Pr) Derk(S) and thus,
there exist a ∈ I ′, b ∈ Pr and δ′ ∈ Derk(S) such that:

δ − ε = (a+ b)δ′

By resorting the equation, we obtain:

δ − aδ′ = ε+ bδ′

Set γ = δ − aδ′, then we get for x ∈ I:

γ(x) = δ(x)︸︷︷︸
∈I′, since δ∈DI′ (S)

− aδ′(x)︸ ︷︷ ︸
∈I′, since a∈I′

∈ I ′

γ(x) = ε(x)︸︷︷︸
∈Pr, since ε∈DPr (S)

+ bδ′(x)︸ ︷︷ ︸
∈Pr, since b∈Pr

∈ Pr
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Hence, γ(x) ∈ I ′∩Pr = I and this implies that γ ∈ DI(S). Finally, we have:

γ = δ − aδ′ = δ ∈ DI′(S)/I ′Derk(S)

γ = ε+ bδ′ = ε ∈ DPr(S)/Pr Derk(S)

Therefore, ϕ(γ) = (γ, γ) = (δ, ε) and (δ, ε) ∈ Im(ϕ). �

The next step to �nd an explicit formula for the length of the cokernel
of ∆D, is to apply Proposition 4.4.9 inductively. To keep the formula short,
we introduce a new notation:

De�nition 4.4.10. Let S be any k-algebra. For ideals I, J E S, denote by
d(I, J) the length of (DI(S) + DJ(S))/(I + J) Derk(S).

Let S again be a localization of a polynomial ring and I a radical ideal
of S. Suppose that I has only one minimal prime, then I is prime and ∆D

is the identity on Derk(S/I). Hence, Coker(∆D) = 0. The case, where I has
more than one minimal prime ideal, is treated in the following proposition:

Proposition 4.4.11. Let S be a localization of a polynomial ring over a �eld
k, I a radical ideal of S and P1, . . . , Pr the minimal primes of I. Suppose,
r ≥ 2, then we have:

lengthS(Coker(∆D)) =
r∑
i=2

d(
i−1⋂
j=1

Pj , Pi )

Proof. We do an induction on r, starting with the case r = 2. By Proposition
4.4.9, we have an exact sequence:

0 Derk(S/I) Derk(S/P1)×Derk(S/P2) . . .

. . . (DP1(S) + DP2(S))/(P1 + P2) Derk(S) 0

∆D

Hence, we obtain:

Coker(∆D) ∼= (DP1(S) + DP2(S))/(P1 + P2) Derk(S)

From this, we clearly get that lengthS(Coker(∆D)) = d(P1, P2).

For the case r ≥ 3, denote by ∆D
r−1 the diagonal D-embedding of the

ideal I ′ =
⋂r−1
i=1 Pi. If we use the identi�cation of the derivation module

from Lemma 3.4.11, we get the exact sequence:

0 DI′(S)/I ′Derk(S)
r−1∏
i=1

DPi(S)/Pi Derk(S) Coker(∆D
r−1) 0

∆D
r−1 β
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Replacing ∆D
r−1 by the map ∆D′

r−1 = (∆D
r−1, id) and β by β′ = (β, 0), we

obtain another exact sequence:

0 DI′(S)
/
I ′Derk(S)×

DPr(S)
/
Pr Derk(S)

r∏
i=1

DPi(S)
/
Pi Derk(S) Coker(∆D

r−1) 0
∆D′

r−1 β′

No we extend this single sequence to a commutative diagram: the �rst col-
umn map is the embedding ϕ : DI(S)/I Derk(S) ↪→ DI′(S)/I ′Derk(S) ×
DPr(S)/Pr Derk(S) from Proposition 4.4.9. All maps in the �rst square are
induced by the identity. Hence, it is commutative. The second square is also
commutative, since DI(S)/I Derk(S) was embedded into Ker(β′).

0 DI(S)
/
I Derk(S)

DI(S)
/
I Derk(S) 0 0

0 DI′(S)
/
I ′Derk(S)×

DPr(S)
/
Pr Derk(S)

r∏
i=1

DPi(S)
/
Pi Derk(S) Coker(∆D

r−1) 0

ϕ ∆D

∆D′
r−1 β′

Since the corresponding kernels of the columns are all 0, the Snake Lemma
provides us with the exactness of the Cokernel-sequence:

0 (DI′(S) + DPr(S))/(I ′ + Pr) Derk(S) Coker(∆D) Coker(∆D
r−1) 0

Hence, a recursive formula for the length of Coker(∆D) can be deduced and
we may apply the induction hypothesis:

lengthS(Coker(∆D)) = lengthS(Coker(∆D
r−1)) + d(I ′, Pr)

=

r−1∑
i=2

d(

i−1⋂
j=1

Pj , Pi) + d(

r−1⋂
j=1

Pj , Pr)

=

r∑
i=2

d(

i−1⋂
j=1

Pj , Pi) �

Now combine Propositions 4.4.8 and 4.4.11. Then we immediately obtain
the desired formula for the Deligne number:

Corollary 4.4.12. Let S be a localized polynomial ring over a �eld k of char-
acteristic 0. If I is a radical ideal of S so that dimS/I = 1 and P1, . . . , Pr
are the minimal primes of I, then we have the formula:

mS/I =

r∑
i=1

mS/Pi
+

r∑
i=2

d(

i−1⋂
j=1

Pj , Pi )
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In particular:

eS/I = 3δS/I −

 r∑
i=1

mS/Pi
+

r∑
i=2

d(
i−1⋂
j=1

Pj , Pi )


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5. Computational aspects of

invariants

In Chapter 4, we stated algorithmic ideas to compute the conductor and the
Deligne number. This Chapter treats algorithms, that we have extracted
from these ideas. First of all, we recall some basic algorithms for rings and
modules in Section 5.1 and 5.2. Since we need an algorithm for computing
the normalization of a ring, we give a short introduction to such algorithms
in Section 5.3. The algorithms for the delta invariant, the multiplicity of the
conductor and the Deligne number can be found in Section 5.4.
All algorithms stated, work over localizations of polynomial rings. In Section
5.5, we explain, why we can reduce to this case, when we actually want to
compute over analytic algebras and give several examples.
At the end of the chapter, we give a short outlook: we describe which future
projects could be established by using the implementation and the theory
developed in this thesis.

5.1 Basic algorithms for rings and ideals

We will recall some basic algorithms for polynomial rings that were assigned
to arbitrary monomial orderings. For the theory of standard bases and nor-
mal forms in this case, we refer to [GP08, Sections 1.6, 1.7].
After a short introduction to the notation used, we will state algorithms for
elimination of variables, intersection of ideals, ideal quotients, Krull dimen-
sion and vector space dimension of quotient rings.

De�nition 5.1.1. Let k be a �eld and x = x1, . . . , xn indeterminates over
k. Let > be a monomial ordering, a total ordering on the set of monomials in
x, that satis�es: if xα > xβ , then for any γ, we have: xα+γ > xβ+γ . Denote
by LM the leading monomial of a polynomial in k[x] with respect to >, then
we consider the multiplicatively closed subset of k[x]:

S> = {f ∈ k[x] \ 0 | LM(f) = 1}

Now set:

k[x]> = S−1
> k[x] =

{
g

f

∣∣∣ g, f ∈ k[x],LM(f) = 1

}
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So if we pick an arbitrary monomial ordering, the resulting ring is only
a localization of a polynomial ring. And we can say even more:

Lemma 5.1.2. Let k be a �eld and > a monomial ordering. Then:

1. k[x] ⊆ k[x]> ⊆ k[x]〈x〉

2. k[x] = k[x]> if and only if > is global.

3. k[x]〈x〉 = k[x]> if and only if > is local.

Proof. See [GP08, Lemma 1.5.2]. �

To �x notation, let k always denote a �eld, x, y �nite sets of indetermi-
nates over k and R a ring k[x]>, where > is a monomial ordering on k[x].

The �rst basic algorithm we consider, is the elimination of variables. If
we have an ideal I of R[y], then we would like to compute generators of the
ideal I ′ = I ∩R. Therefore, we need elimination orderings.

De�nition 5.1.3. A monomial ordering on k[y, x] is called an elimination
ordering for y if it satis�es: for any f ∈ k[y, x] so that LM(f) ∈ k[x], we
also have: f ∈ k[x].

Let us throw a glance at an example before we state the algorithm for
computing a standard basis for I ∩R.

Example 5.1.4. Let > be an arbitrary monomial ordering on k[x] and >′

a global ordering on k[y]. Then the Gblock ordering >block= (>′, >) is an
elimination ordering for y on k[y, x].

Proof. Let f ∈ k[y, x], so that LM(f) ∈ k[x]. Then LM(f) = xα. If m =
yβxγ denotes another monomial of f , then we get LM(f) >block m. This
means:

1 >′ yβ or 1 = yβ and xα > xγ

Since >′ is global, we obtain that 1 = yβ and therefore, m ∈ k[x]. Hence,
>block is an elimination ordering for y. �

In case of such a block ordering, the example shows that we can choose
any global ordering as �rst component to obtain the elimination property.
In the following algorithm, we may therefore choose (dp,>).

In Lemma 5.1.5 we will state, why elimination orderings are the key tool
to eliminate variables. In fact, the lemma does not only prove the correctness
of Algorithm 1, it also states that a standard basis for the ideal I ∩ R is
returned.
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Algorithm 1 Elimination of variables
Input: An ideal I of S = R[y] = (k[x]>)[y], where > is an arbitrary mono-
mial ordering on the monomials in x
Output: Generators of the ideal I ′ = I ∩R

1: choose an elimination ordering >′ for y on the monomials in y, x that
induces > on the monomials in x (i.e. (dp,>))

2: compute a standard basis {g1, . . . , gl} of I with respect to >′

3: collect those gi in a set G′, whose leading monomials LM(gi) do not
involve y

4: return G′

Lemma 5.1.5. Let > be an elimination ordering for y on the set of all
monomials in y, x and let I be an ideal in k[y, x]>. If G is a standard basis
of I, then:

G′ = {g ∈ G | LM(g) ∈ k[x]}

is a standard basis of I ′ = I∩k[x]>′, where >
′ denotes the monomial ordering

on k[x], induced by >′.

Proof. See [GP08, Lemma 1.8.3]. �

As a consequence of elimination, we are able to compute generators of
the intersection of two ideals:

Lemma 5.1.6. Let I1 = 〈f1, . . . , fk〉 and I2 = 〈h1, . . . , hr〉 be two ideals of
R. Set

J = 〈tf1, . . . , tfk, (1− t)h1, . . . , (1− t)hr〉 E R[t]

Then: I1 ∩ I2 = J ∩R.

Proof. This is [GP08, Lemma 1.8.10]. �

Algorithm 2 Intersection of ideals
Input: I1 = 〈f1, . . . , fk〉, I2 = 〈h1, . . . , hr〉 ideals of R
Output: Generators of the ideal I1 ∩ I2

1: J := 〈tf1, . . . , tfk, (1− t)h1, . . . , (1− t)hr〉 E R[t]
2: use Algorithm 1 to compute a set of generators G of J ∩R
3: return G

The correctness of Algorithm 2 directly follows from Lemma 5.1.6.
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Now we may use the intersection of ideals to compute an ideal quotient:
I :R J . If J = 〈h1, . . . , hk〉, then we know from Lemma 4.3.14 that

I :R J =
k⋂
i=1

(I :R 〈hi〉)

So we set the focus on quotients: I :R 〈h〉. Therefore, consider the following
lemma:

Lemma 5.1.7. Let I be an ideal of R and h ∈ R, h 6= 0. Moreover, let
I ∩ 〈h〉 = 〈g1h, . . . , gkh〉. Then:

I :R 〈h〉 = 〈g1, . . . , gk〉

Proof. See [GP08, Lemma 1.8.12]. �

The algorithmic idea is clear. Hence, we can state the algorithm for
computing the quotient of two ideals:

Algorithm 3 Quotient of two ideals
Input: I = 〈f1, . . . , fs〉, J = 〈h1, . . . , hk〉 ideals of R
Output: Generators of the ideal I :R J

1: for i = 1, . . . , k do
2: compute a set of generators Gi = {g′i1, . . . , g′iki} of I ∩ 〈hi〉 with 2
3: set Ai = 〈gi1, . . . , giki〉, where gij = g′ij/h

4: compute a set of generators G of
⋂k
i=1Ai

5: return G

For the correctness of Algorithm 3, note that any generating set of I∩〈hi〉
is of the form {gi1h, . . . , gikih}. Hence, we can divide the elements g′ij by hi
and by Lemma 5.1.7, we obtain a generating set for I :R 〈hi〉.

The next step is to compute the Krull dimension and the k-vector space
dimension of a quotient R/I. We can reduce this to the case k[x]/J , where
J is a monomial ideal:

Theorem 5.1.8. Let I be an ideal of R = k[x]>, then we have:

a) dim(R/I) = dim(k[x]/L(I))

b) dimk(R/I) = dimk(k[x]/L(I)) and if dimk(R/I) <∞, then the mono-
mials in k[x] \ L(I) are a k-basis of R/I.

Proof. See [DL06, Theorem 9.29]. �
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Computing the Krull dimension in this setting reduces to a purely com-
binatorial task:

Theorem 5.1.9. If J is a proper ideal of k[x] and G a Gröbner basis of J ,
then dim(k[x]/J) is the maximal cardinality of a set u ⊆ x so that no leading
monomial of an element of G is in k[u].

Proof. See [DL06, Theorem 6.3]. �

Algorithm 4 Krull dimension of a quotient ring
Input: An ideal I of R
Output: The Krull dimension dimension of R/I

1: compute a standard basis G = {g1, . . . , gk} of I
2: u := x
3: for i = 1, . . . , n do
4: for j = 1, . . . , k do
5: if LM(gj) ∈ k[u] then
6: u := u \ xi
7: break
8: r := #u
9: return r

Theorem 5.1.8 and 5.1.9 prove the correctness of Algorithm 4.

Theorem 5.1.8 also reduces the computation of the k-vector space dimen-
sion to a combinatorial question. But in opposition to the Krull dimension of
R/I, the vector space dimension can be in�nite. So we still need a criterion
for �niteness:

Theorem 5.1.10. Let I be a proper ideal of k[x] and G a Gröbner basis of
I. Then the following are equivalent:

a) dim(k[x]/I) = 0

b) dimk(k[x]/I) is �nite.

c) dimk(k[x]/L(I)) is �nite.

d) For each 1 ≤ i ≤ n, there exists an αi ∈ N so that xαi
i is the leading

monomial of an element in G.

Proof. See [DL06, Theorem 6.1]. �

A way to apply Theorem 5.1.10, is to compute the Krull dimension by
Algorithm 4 �rst and then test it to be zero. After that we count the mono-
mials in k[x] \ L(I) since these form a basis of R/I by Theorem 5.1.8.
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Algorithm 5 Vector space dimension of quotient ring
Input: An ideal I of R
Output: The k-vector space dimension of R/I

1: compute a standard basis G = {g1, . . . , gk} of I with respect to >
2: compute d = dim(R/I) by Algorithm 4
3: if d 6= 0 then
4: return ∞
5: pick αi ∈ N so that xαi

i is the leading monomial of an element of G for
i = 1, . . . , n

6: r := 0
7: Set L := {xj11 · · ·x

jn
n | ji < αi} = {m1, . . . ,ml}

8: for t = 1, . . . , l do
9: if mt /∈ L(I) then

10: r := r + 1

11: return r

Note, that we can e�ciently decide, if a monomial mt is in L(I): we only
need to test if mt is divisible by a leading monomial of the standard basis
that we computed before.

Algorithm 5 works correctly and terminates:

Proof. In Step 3, we make use of the �niteness criterion of Theorem 5.1.10.
Therefore, the exponents αi exist and can be chosen. The set L is a �nite
set of monomials and we know that any monomial in k[x] \ L(I) is in L.
Hence, we test these monomials to be in L(I) and obtain exactly the set of
monomials in k[x] \ L(I), which is a basis of R/I by Theorem 5.1.8. �

5.2 Basic algorithms for modules

In this section, we recall algorithms for modules. First, we state how to
compute syzygies and generators for the intersection of submodules of a free
module. After that, we state an algorithm that returns generators of the
kernel of a linear map between modules. Then we are looking for a particu-
lar nice way to describe the quotient of two submodules.
Like in the previous section, we denote by k a �eld, by x a �nite set of inde-
terminates over k and by R a ring k[x]>, where > is an arbitrary monomial
ordering on k[x]. The vectors e1, . . . , et always denote the canonical basis of
Rt.
We refer to [GP08, Section 2.3] for the theory of Gröbner basis and standard
basis of free modules Rt.
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De�nition 5.2.1. Let M be an R-module and f1, . . . , fk ∈ M . A syzygy
between the fi is a tuple (g1, . . . , gk) ∈ Rk so that:

k∑
i=1

gifi = 0

We denote the set of all syzygies between the fi by syz(f1, . . . , fk). Note
that this is the kernel of the map

k⊕
i=1

Rei −→M

ei 7−→ fi

Therefore, syz(f1, . . . , fk) is an R-submodule of the free module Rk and it is
called module of syzygies.

The task is now to state an algorithm for computing generators of the
module of syzygies. We will need this, when we deal with intersections of
submodules and kernels of linear maps. Another application of syzygies is
the computation of free resolutions, see [GP08, Algorithm 2.5.7].
An algorithmic idea can be extracted from the following lemma:

Lemma 5.2.2. Let f1, . . . , fk ∈ Rt. Consider the canonical embedding

Rt =

t⊕
i=1

Rei ⊆
t+k⊕
i=1

Rei = Rt+k

and the canonical projection π : Rt+k → Rk. Let G = {g1, . . . , gs} denote a
standard basis of F = 〈f1 +et+1, . . . , fk+et+k〉 with respect to an elimination
ordering for e1, . . . , et. Assume that G ∩

⊕t+k
i=t+1Rei = {g1, . . . , gl}, then:

syz(f1, . . . , fk) = 〈π(g1), . . . , π(gl)〉

Proof. See [GP08, Lemma 2.5.3]. �

Remark 5.2.3. The lemma requires an elimination ordering for e1, . . . , et.
Let > be an arbitrary monomial ordering on k[x], then an example for an
elimination ordering for e1, . . . , et is given by >el:

xαei >el x
βej if i < j or i = j and xα > xβ

The name of the ordering comes from a fact that is similar to elimination
orderings for variables: let f ∈ R so that LM(f) ∈

⊕t+k
i=t+1 k[x]ei, then

f ∈
⊕t+k

i=t+1Rei.

Now that we know, how to construct an elimination ordering, we are able
to state the algorithm.
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Algorithm 6 Generators for module of syzygies

Input: f1, . . . , fk ∈ Rt
Output: Generators of syz(f1, . . . , fk)

1: F := {f1 + et+1, . . . , fk + et+k}, where Rt+k =
⊕t+k

i=1 Rei ⊇
⊕t

i=1Rei =
Rt

2: compute a standard basis G = {g1, . . . , gs} of 〈F 〉 with respect to an
elimination ordering for e1, . . . , et

3: let {g1, . . . , gl} = G ∩
⊕t+k

i=t+1Rei, where gi =
∑k

j=1 gijet+j , i = 1, . . . , l
4: set g′i := (gi1, . . . , gik), i = 1, . . . , l
5: return {g′1, . . . , g′l}

This can also be found in [GP08, Algorithm 2.5.4]. The correctness fol-
lows from from Lemma 5.2.2
The algorithm can even be extended to the case, where we compute over a
quotient ring S = R/I. This is due to [GP08, Remark 2.5.6].

The �rst application of Algorithm 6 is the computation of generators of
an intersection of submodules. We make use of the following lemma:

Lemma 5.2.4. Let f1, . . . , fk and g1, . . . , gs ∈ k[x]t. Set U = 〈f1, . . . , fk〉Rt
and V = 〈g1, . . . , gs〉Rt. Denote by c1, . . . , ct+k+s ∈ k[x]2t be the columns of
the matrix: 

1
. . . f1 . . . fk 0 . . . 0

1

1
. . . 0 . . . 0 g1 . . . gs

1


Then for h ∈ k[x]t, we have: h ∈ U ∩ V if and only if h appears as the �rst
t components of an element h′ ∈ syz(c1, . . . , ct+k+s).

Proof. Let h be in U ∩ V ⊆ Rt. Then we can write:

h =
t∑
i=1

hiei =
k∑
l=1

rlfl =
s∑
j=1

r′jgj ,

where hi ∈ k[x] and rl, r′j ∈ R. The tuple

(h1, . . . , ht,−r1, . . . ,−rk,−r′1, . . . ,−r′s)

is in syz(c1, . . . , ct+k+s) and h appears as the �rst t components of it.
If h =

∑t
i=1 hiei ∈ k[x]t so that there is an element

(h1, . . . , ht, r1, . . . , rk, r
′
1, . . . , r

′
s) ∈ syz(c1, . . . , ct+k+s),
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then we immediately get equations:

0 =

t∑
i=1

hiei +

k∑
l=1

rlfl and 0 =

t∑
i=1

hiei +

s∑
j=1

r′jgj

Hence, h ∈ U ∩ V . �

This can be turned into an algorithm and the correctness can be deduced
from Lemma 5.2.4. But note that the submodules have to be generated by
elements of k[x]t.

Algorithm 7 Intersection of submodules

Input: U = 〈f1, . . . , fk〉Rt and V = 〈g1, . . . , gs〉Rt, where fi, gj ∈ k[x]t

Output: A set of generators of U ∩ V

1: Let c1, . . . , ct+k+s as in Lemma 5.2.4
2: compute a set of generatorsH = {h1, . . . , hm} of syz(c1, . . . , ct+k+s) with

Algorithm 6
3: Set h′i = πt(hi), i = 1, . . . ,m, where πt denotes the projection to the �rst
t components

4: return H ′ = {h′1, . . . , h′m}

Our second application of the module of syzygies are kernels of linear
maps. Since we allow these computations over quotient rings, we may �x
notations: S = R/I, where I is an ideal of R. We �rst state an algorithm
and discuss afterwards why it is correct.

Algorithm 8 Generators for kernel of a linear map

Input: A matrix B = (b1, . . . , bk), representing a linear map ϕ : Sk/U →
Sm/V , where U is a submodule of Sk and V = 〈v1, . . . , vs〉 is a submodule
of Sm

Output: Generators for Ker(ϕ) in Sk

1: compute generators h1, . . . , hl for the syzygy-module:

syz(b1, . . . , bk, v1, . . . , vs) ⊆ Sk+s

2: set h′i = πk(hi), i = 1, . . . , l, where πk denotes the projection to the �rst
k components

3: return {h′1, . . . , h′l}

The reason why Algorithm 8 works correctly is due to the following re-
mark, which can also be found in [GP08, 2.8.7].
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Remark 5.2.5. Let U be a submodule of Sk and V = 〈v1, . . . , vs〉 a sub-
module of Sm. Let ϕ : Sk/U → Sm/V be an S-linear map, represented by
the matrix B = (b1, . . . , bk), where bi ∈ Sm.
We want to compute generators in Sk for Ker(ϕ) by making use of syzy-
gies. An element f =

∑k
i=1 fiei is in Ker(ϕ) if and only if there ex-

ist y1, . . . , ys ∈ S so that
∑k

i=1 fibi =
∑s

j=1 yjvj and this means that
(f1, . . . , fk,−y1, . . . ,−ys) ∈ syz(b1, . . . , bk, v1, . . . , vs).

Now that we are able to compute kernels of such maps, we may state an
algorithm that returns a useful representation of a quotient of two submod-
ules. In Singular, this algorithm is available via the command modulo.

Algorithm 9 Representation of submodule-quotient
Input: Two submodules U = 〈u1, . . . , uk〉, V = 〈v1, . . . , vs〉 of the free mod-
ule Sm

Output: Generators of a module C, so that Sk/C ∼= (U + V )/V

1: de�ne the matrix B = (u1, . . . , uk), representing the map ϕU : Sk →
Sm/V

2: compute generators c1, . . . , ct of C = Ker(ϕU ) with Algorithm 8
3: return {c1, . . . , ct}

The algorithm computes the desired representation:

Proof. Algorithm 8 returns the generators c1, . . . , ct of C = Ker(ϕU ) and by
the homomorphism theorem we get:

Sk/C ∼= Im(ϕU ) = (U + V )/V

�

Our last consideration in this section is an extension of an algorithm that
we examined in Section 5.1: the Singular command vdim.

Remark 5.2.6. In Algorithm 5, we have seen that we are able to compute
the vector space dimension of quotient rings. It is possible to extend this
algorithm so that we are able to compute the vector space dimension of
quotients Rt/M , where M is a submodule of Rt. In Singular, this is
implemented via the command vdim. We refer to the manual of [Singular]
for details.

5.3 Computing the normalization

We want to compute the normalization of a reduced ring S. Therefore, we
will give an introduction to the algorithmic idea and then chose an algorithm,
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that is suitable for our considerations. A �rst step is to de�ne the notion
of test ideals. These are used to construct chains of rings between S and S.
Such chains will stabilize, which ensures the termination of the algorithm
and with the Grauert-Remmert criterion, we will also get the correctness.

De�nition 5.3.1. An ideal J of S is called test ideal of S if it satis�es:

� J contains a non-zero divisor of S,

�

√
J = J ,

� N(S) ⊆ V (J), where N(S) denotes the non-normal locus of S:

N(S) = {P ∈ Spec(S) |SP is not normal}

We mentioned at the beginning of this section, that test ideals generate
rings between S and S:

Lemma 5.3.2. Let J be a test ideal of S. Then we have inclusions:

S ⊆ HomS(J, J) ⊆ S

Proof. See [GP08, Lemma 3.6.1]. �

The criterion which allows us to state the algorithmic idea is due to
Grauert and Remmert. It relates the endomorphism rings of the test ideals
to the normalization.

Proposition 5.3.3. Let J be a test ideal of S. Then, S is normal if and
only if S = HomS(J, J).

Proof. This is [GP08, Proposition 3.6.5]. �

Remark 5.3.4. The algorithmic idea to compute S combines Lemma 5.3.2
and the criterion given in Proposition 5.3.3.
Let J0 be a test ideal of S0 = S. Then we compute HomS0(J0, J0) = S1 and
we know from Lemma 5.3.2 that: S0 ⊆ S1 ⊆ S.

� If S0 = S1, then we may apply Proposition 5.3.3 to get that S0 is
normal.

� If S0 ( S1, then S0 cannot be normal. Therefore, we may succeed with
S1 in the same way. Note, that Q(S1) = Q(S0) and thus, S1 = S0 by
Proposition 2.1.13.

We get a chain of rings in S:

S = S0 ( S1 ( · · · ( Si ⊆ · · · ⊆ S

This has to stabilize since S is a �nitely generated S-module. Therefore,
there exists an index l ∈ N so that: Sl = Sl+1. But Sl+1 = HomSl

(Jl, Jl)
for a test ideal Jl in Sl. Hence, Sl is normal by Proposition 5.3.3 and we get
that S = Sl = Sl.
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An algorithm that follows this idea can be found in [GP08, Algorithm
3.6.9]. It computes the normalization in the case, where S = k[x]/I is an
integral domain. Since we know by Proposition 2.1.15 that we can reduce to
this case, we just need to �nd the minimal associated primes. For this task,
we refer to [GP08, Chapter 4].

Another normalization algorithm can be found in [GLS10]. Let R = k[x],
where k is a perfect �eld and I a prime ideal in R. Algorithm [GLS10,
Algorithm 3] computes an ideal U of R and d ∈ R so that R/I = 1

dU in
Q(R/I). So we get the R/I-module generators of R/I.
In [GLS10, Lemma 6.1] and [GLS10, Remark 6.3], the authors generalize the
algorithm to non-global orderings. This basically works since we can swap
localization and normalization by Proposition 2.1.17.

Remark 5.3.5. For an implementation of [GLS10, Algorithm 3], we refer
to the [Singular] manual and the command normal. This also handles the
case, where I is not necessarily a prime ideal but only a radical ideal. The
algorithm computes the minimal primes P1, . . . , Pr, ideals U1, . . . , Ur E R,
Ui = 〈u(i)

1 , . . . , u
(i)
ki
〉 and d1, . . . , dr ∈ R so that R/Pi = 1

di
Ui in Q(R/Pi),

for i = 1, . . . , r. It also returns representations of R/Pi as R-algebras: rings

R[ti] = [t
(i)
1 , . . . , t

(i)
ki

] and ideals Ji E R[ti] so that R[ti]/Ji = R/P . Note,

that the t(i)j correspond to the elements
u
(i)
j

di
since Ji is the kernel of the map

R[ti]→ 1
di
Ui.

5.4 Algorithms for computing invariants

The �rst invariant that we compute, is the delta invariant of R/I, where
R = k[x]>, > a local ordering and I a radical ideal of R. We reduce the
computation of δR/I to that of a single branch: R/P , where P is a minimal
associated prime ideal of I. After that, we state algorithms for the conductor
and the multiplicity of the conductor. The algorithmic idea to compute CR/I
and cR/I is taken from Section 4.3. At last, we also turn the ideas from
Section 4.4 into an algorithm to compute the Deligne number eR/I .
Implementations of the stated algorithms in Singular, except for the delta
invariant, which is already implemented as part of the command normal,
can be found in Appendix B.

Lemma 5.4.1. Let I be a radical ideal of R and I =
⋂r
i=1 Pi the decompo-

sition into its minimal primes. Denote by (Ui, di) the output of the normal-
ization algorithm applied to R/Pi. Then we have:

a) δR/Pi
= dimk(Ui/diUi) for all i = 1, . . . , r.

b) δR/I =
∑r

i=1 δR/Pi
+
∑r−1

i=1 dimk(R/(I +
⋂r
j=i+1 Pj))
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Proof. This is a special case of [GLS10, Lemma 4.7]. �

In fact, Lemma 5.4.1 reduces the computation of δR/I to the branch-case
since we can compute the vector space dimension of R/(I +

⋂r
j=i+1 Pj) by

Algorithm 5. Applying Algorithm 9 to Ui/diUi, we obtain a representation:
Rti/Ci ∼= Ui/diUi. Hence, we can also compute the vector space dimension
of Ui/diUi by Remark 5.2.6. Altogether, we can state the following algorithm
whose correctness directly follows from Lemma 5.4.1.

Algorithm 10 Delta invariant
Input: A radical ideal I of R so that dimR/I = 1 and its minimal primes
P1, . . . , Pr
Output: The delta invariant δR/I

1: apply the normalization algorithm to Pi. Denote the output by (Ui, di)
2: for i = 1, . . . , r do
3: compute Ci and li, so that Ui/diUi ∼= Rli/Ci using Algorithm 9
4: compute δi := dimk(R

li/Ci)
5: compute I(i) :=

⋂r
j=i+1 Pj using Algorithm 2

6: compute γi := dimk(R/(I + I(i)))

7: return
∑r

i=1 δi +
∑r−1

i=1 γi

Now focus on the computation of the conductor CR/I . Theorem 4.3.16
states a computable form of CR/I and therefore allows us to derive an al-
gorithm. In fact, this algorithm is independent of the chosen ordering on
R = k[x]>.

Algorithm 11 Conductor
Input: A radical ideal I of R
Output: The conductor CR/I as an ideal in R

1: apply the normalization algorithm to I. Denote the output by (Ui, di)
and let R[ti]/Ji be the R-algebra representation of R/Pi, where Pi is a
minimal prime of I, i = 1, . . . , r

2: compute Pi = Ji ∩R by Algorithm 1, i = 1, . . . , r
3: use Algorithms 2 and 3 to compute the ideal

I(i) :=

Pi + di
⋂
j 6=i

Pj

 :R Ui

for i = 1, . . . , r
4: return

⋂r
i=1 I

(i)
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Note, that the ideals Pi = Ji∩R are indeed the minimal primes ideals of
I. This can be seen in the �rst part of the proof of Theorem 4.3.16. Hence,
the correctness follows by this theorem.

The next algorithm computes the multiplicity of the conductor cR/I .
Therefore, we make use of the formula stated in Remark 4.3.11:

Algorithm 12 Multiplicity of the conductor
Input: A radical ideal I of R so that dimR/I = 1
Output: The multiplicity of the conductor: cR/I

1: use Algorithm 10 to compute δR/I
2: compute the conductor CR/I E R with Algorithm 11
3: compute d := dimk(R/CS)
4: return δR/I + d

For the correctness, note that the conductor CR/I is an ideal in R. In fact,
it is the preimage of the conductor ideal of S = R/I. Hence, R/CS ∼= S/CS
and we get: d = dimk(S/CS). Then the formula of Remark 4.3.11 shows
that the algorithm works correctly.

The Deligne number eR/I depends on the colength of derivations and the
delta invariant. Since we can compute the latter by Algorithm 10, we focus
on the calculation of the colength of derivations. Like for δR/I , we reduce to
the branch-case. Therefore, we make use of the formula that we derived in
Corollary 4.4.12:

mR/I =

r∑
i=1

mR/Pi
+

r∑
i=2

d(

i−1⋂
j=1

Pj , Pi ),

where P1, . . . , Pr are the minimal primes of I.

The �rst step is to compute d(I, J), where I, J are ideals in R. But
therefore, we need generators of the I and J-preserving derivations. The
following lemma describes how we can �nd them:

Lemma 5.4.2. Let I = 〈f1, . . . , fk〉 be an ideal of R = k[x]> = k[x1, . . . , xn]>.
Set

A =


∂f1
∂x1

. . . ∂f1
∂xn

f1 0 . . . fk 0
...

...
. . .

. . .
∂fk
∂x1

. . . ∂fk
∂xn

0 f1 . . . 0 fk


and denote by Φ : Rn+kn → Rk the linear map induced by A. Consider
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Rn ⊆ Rn+kn as the submodule generated by the �rst n components, then:

DI(R) ∼= Ker(Φ) ∩Rn

Proof. The proof of [Epu15, Lemma 6.25] treats the case, where R = k[x].
Taking a closer look at the proof, we see that the arguments also work for
R = k[x]>. �

The resulting algorithm is also due to [Epu15] and the correctness follows
from Lemma 5.4.2.

Algorithm 13 I-preserving derivations
Input: An ideal I = 〈f1, . . . , fk〉 of R
Output: A generating set G of DI(R)

1: denote by c1, . . . , cn+kn the columns of the matrix of Lemma 5.4.2
2: compute generators {g′1, . . . , g′l} of syz(c1, . . . , cn+kn) using Algorithm 6
3: set gi = πn(g′i), where πn denotes the projection to the �rst n components
4: return G := {g1, . . . , gl}

As a consequence, we are now able to compute d(I, J):

Algorithm 14 d(I, J)

Input: Ideals I = 〈f1, . . . , fk〉, J = 〈g1, . . . , gl〉 of R
Output: d(I, J)

1: compute sets of generators GI and GJ of DI(R) and DJ(R) using Algo-
rithm 13

2: set N := (I + J)Rn and M := DI(R) + DJ(R)
3: compute generators of a module C and t ∈ N so that Rt/C ∼= M/N
4: compute d := dimk(R

t/C)
5: return d

Algorithm 14 works correctly:

Proof. The algorithm follows the de�nition of the d-notation.

d(I, J) = lengthR((DI(R) + DJ(R))/(I + J) Derk(R))

= lengthR((DI(R) + DJ(R))/(I + J)Rn)

= lengthR(M/N)

= lengthR(Rt/C)

= dimk(R
t/C)

= d

Note that we used: Derk(R) ∼= Rn. This is due to Example 3.4.3. �
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The second step to compute the Deligne number is to state an algorithm
for a single colength of derivations mR/P , where P is a prime ideal. We have

to simulate the injection Derk(R/P ) ↪→ Derk(R/P ) to compute the length
of Derk(R/P )/Derk(R/P ). The solution to this will be the quotient rule.
For the algorithm, we also need the following: If f ∈ I = 〈f1, . . . , fl〉 E R,
then we can compute polynomials u, g1, . . . , gl ∈ k[x] so that: u ∈ R∗ and

uf =
l∑

i=1

gifi

For this we refer to [GP08, Section 2.8.1] and the Singular command
division.

Algorithm 15 Colength of derivations of a prime ideal
Input: A prime ideal P of R so that dimR/P = 1
Output: mR/P

1: apply the normalization algorithm to P . Denote the output by (U, d).
Let U = 〈u1, . . . , uk〉 and R[t]/J = R[t1, . . . , tk]/J be the R-algebra
presentation of R/P

2: compute a set of generators δ1, . . . , δr of DP (R) using Algorithm 13
3: for i = 1, . . . , r do
4: for j = 1, . . . , k do
5: set f = δi(uj)d− δi(d)uj
6: use division to get dij , gij ∈ k[x, t], a ∈ J so that:

dij ∈ R[t]∗ and

dijf = gijd
2 + a

7: compute D =
∏
i,j dij ∈ k[x, t] ∩R[t]∗

8: for i = 1, . . . , r do
9: set δexti := Dδi

10: for j = 1, . . . , k do
11: δexti := δexti + D

dij
gij

∂
∂tj

12: set M ext = 〈δext1 , . . . , δextr 〉
13: compute generators γ1, . . . , γz of DJ(R[t]) using Algorithm 13
14: compute module C so that R[t]w/C ∼= DJ(R[t])/(JR[t]n+k +M ext) with

Algorithm 9
15: compute m = dimk(R[t]w/C)
16: return m

Algorithm 15 works correctly:
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Proof. First, we set ϕ : Derk(R/P ) → Derk(R/P ). This is the embedding
of Proposition 4.4.4. In Step 2, we compute the generators of Derk(R/P ) =
DP (R)/P Derk(R), these are δ1, . . . , δr. Now apply ϕ to δi, then we get a
derivation ϕ(δi) : R/P → R/P . Since R/P = R[t]/J , we can also consider
ϕ(δi) as a class εi in DJ(R[t])/J Derk(R[t]), where εi ∈ DJ(R[t]). Hence, we
obtain:

Derk(R/P ) ∼= Im(ϕ) = 〈ε1, . . . , εr〉

The next step is to show, that the algorithm computes representatives of the
εi, up to the unit D. For this, note that εi is the unique extension of δi to
R[t]/J . Using that tj =

uj
d
∈ R[t]/J by Remark 5.3.5, we can deduce:

εi(tj) = εi

(
uj

d

)
=
δi(uj)d− δi(d)uj

d2
=
δi(uj)d− δi(d)uj

d2
∈ R[t]/J

Thus, δi(uj)d− δi(d)uj ∈ 〈d2〉+ J E R[t]. So we can actually perform Step
6 of the algorithm: we get dij , gij ∈ k[x, t] and a ∈ J so that dij ∈ R[t]∗ and
dij(δi(uj)d− δi(d)uj) = gijd

2 + a. Hence, we get the equality:

gij

dij
=
δi(uj)d− δi(d)uj

d2
= εi(tj)

In the steps 8 to 11, the algorithm constructs

δexti = Dδi +
k∑
j=1

D

dij
gij

∂

∂tj

Then δexti ∈ Derk(R[t]), since R[t] = k[x]>[t] = k[x, t](>,>′), where >
′ is

global. Therefore, R[t] is just a localization of k[x, t] and by Example 3.4.3,
we get: Derk(R[t]) =

⊕n
l=1R[t] ∂

∂xl
⊕
⊕k

j=1R[t] ∂∂tj
.

Now consider in R[t]/J :

δexti (xl) = Dδi(xl) = D · δi(xl) = D · εi(xl) = Dεi(xl)

δexti (tj) =
D

dij
gij = D · εi(tj) = Dεi(tj)

Hence, there exist cil, c′ij ∈ J so that δexti (xl) = Dεi(xl) + cil and δexti (tj) =
Dεi(tj) + c′ij . As a consequence, we can write:

δexti =
n∑
l=1

(Dεi(xl) + cil)
∂

∂xl
+

k∑
j=1

(Dεi(tj) + c′ij)
∂

∂tj

= Dε︸︷︷︸
∈DJ (R[t])

+
n∑
l=1

cil
∂

∂xl
+

k∑
j=1

c′ij
∂

∂tj︸ ︷︷ ︸
∈J Derk(R[t]) ⊆ DJ (R[t])
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We obtain that δexti ∈ DJ(R[t]) and in DJ(R[t])/J Derk(R[t]), we have the
equality: δexti = Dεi.
The last thing to show is that the dimension m, computed in Step 15, is
really equal to mR/P . We set M ext = 〈δext1 , . . . , δextr 〉 in Step 12. With the

equality δexti = Dεi, we can deduce that

(M ext + J Derk(R[t]))/J Derk(R[t]) = M ext

= D〈ε1, . . . , εr〉
∼= 〈ε1, . . . , εr〉
∼= Derk(R/P )

With the identi�cation Derk(R[t]) ∼= R[t]n+k and Step 14, we �nally obtain:

Derk(R/P )/Derk(R/P ) = Derk(R[t]/J)/Derk(R/P )

∼= DJ(R[t])/J Derk(R[t])
/

(M ext + J Derk(R[t]))/J Derk(R[t])

∼= DJ(R[t])/(M ext + J Derk(R[t]))

∼= DJ(R[t])/(M ext + JR[t]n+k)
∼= R[t]w/C

Therefore, m = dimk(R[t]w/C) = mR/P . �

To �nally compute the Deligne number, we combine the algorithms 14
and 15:

Algorithm 16 Deligne number
Input: A radical ideal I of R so that dimR/I = 1
Output: eR/P

1: compute the minimal primes P1, . . . , Pr of I
2: compute δR/I using Algorithm 10
3: for i = 1, . . . , r do
4: compute mR/Pi

using Algorithm 15

5: compute I(i) =
⋂i−1
j=1 Pj using Algorithm 2

6: compute di = d(I(i), Pi) using Algorithm 14

7: return 3δR/I − (
∑r

i=1mR/Pi
+
∑r

i=2 di)

The correctness follows from Corollary 4.4.12.

5.5 Justi�cation and examples

The original idea of this thesis was to compute invariants of curve singulari-
ties C{x}/I but the algorithms stated in Section 5.4 only work over localized
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polynomial rings. In this section, we will make use of the stability results that
we have established in Chapter 4 to reduce the computation of invariants of
C{x} to the case Q[x]〈x〉, which we can handle with the stated algorithms.
At the end of this section, we throw a glance at some examples.
In the following, let I always denote a radical ideal of Q[x]〈x〉 so that the
ring Q[x]〈x〉/I is of dimension 1.

Theorem 5.5.1. The delta invariant of Q[x]〈x〉/I and C{x}/IC{x} coin-
cide:

δQ[x]〈x〉/I = δC{x}/IC{x}

Proof. The ring S = Q[x]〈x〉/I is a reduced excellent local algebra over the
perfect �eld Q with residue �eld Q. Hence, we apply Proposition 4.2.4 and
obtain: δS = δT , where T = (S ⊗Q C)〈x〉 = C[x]〈x〉/IC[x]〈x〉. By Lemma
1.3.8, the resulting ring T is still reduced since Q is perfect and S is reduced.
Now we apply Proposition 4.2.3 and obtain for the 〈x〉-adic completion:

δT = δ
T̂

We have that T̂ = C[[x]]/IC[[x]] is still reduced by Theorem 2.4.14. If we
apply Proposition 4.2.3 to C{x}/IC{x}, we get:

δC{x}/IC{x} = δC[[x]]/IC[[x]]

Note, that C{x}/IC{x} is reduced, since we can consider it as a subring of
its reduced completion C[[x]]/IC[[x]] by Corollary 1.4.17.
Altogether, we obtain the desired equality:

δQ[x]〈x〉/I = δS = δT = δ
T̂

= δC[[x]]/IC[[x]] = δC{x}/IC{x}

�

The second invariant that we have considered, is the multiplicity of the
conductor. Note that the conductor behaves well with respect to �eld ex-
tension, localization and completion but is not stable.

Theorem 5.5.2. The multiplicity of the conductor of Q[x]〈x〉/I and C{x}/IC{x}
coincide:

cQ[x]〈x〉/I = cC{x}/IC{x}

Proof. We argue as before in Theorem 5.5.1: denote by S = Q[x]〈x〉/I, by
T = C[x]〈x〉/IC[x]〈x〉 and by W = C[[x]]/IC[[x]]. Applying Proposition
4.3.13, we obtain cS = cT and by Proposition 4.3.12, we get: cT = cW . If we
apply Proposition 4.3.12 again to C{x}/IC{x}, we also have: cC{x}/IC{x} =
cW . Therefore, we can deduce that

cC{x}/IC{x} = cS

�
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Now we state a similar theorem for the Deligne number:

Theorem 5.5.3. The Deligne number of Q[x]〈x〉/I and C{x}/IC{x} coin-
cide:

eQ[x]〈x〉/I = eC{x}/IC{x}

Proof. Denote by S = Q[x]〈x〉/I, by T = C[x]〈x〉/IC[x]〈x〉 and by W =
C[[x]]/IC[[x]]. The module of Kähler di�erentials Ω1

S/k is �nitely generated.

Hence, we can apply Theorem 4.4.7 and obtain: eS = eT . Since Ω1
T/C is

also �nitely generated, we get that Ω1
T/C = Ω̃1

T/C. Therefore, we are able to
apply Theorem 4.4.6 to get: eT = eW . By Lemma 3.3.8 and Corollary 3.3.12,
we can derive that the universally �nite module Ω̃1

(C{x}/IC{x})/C exists. So
again applying Theorem 4.4.6 yields eC{x}/IC{x}) = eW and this leads to the
desired equality. �

The examples considered here make use of some results, we mentioned
in the introduction. We give a short overview and we use the Singular

implementation of the algorithms of Section 5.4. For details, see Chapter B.

Theorem 5.5.4. Let R be a reduced Gorenstein curve singularity. Then
cR = 2δR.

Proof. See [Bas63, Corollary 6.5]. �

Theorem 5.5.5. Let R be a reduced curve singularity. Then we have the
inequalities:

eR ≤ µR + 2δR − cR ≤ 3δR − rR,

where µR denotes the Milnor number of R and rR the number of branches.
In particular, taking Theorem 5.5.4 into account: If R is also Gorenstein,
then we have: eR ≤ µR.

Proof. See [Gre82, Theorem 2.5]. �

Theorem 5.5.6. Let R denote a reduced Gorenstein curve singularity. Then
R is quasi-homogeneous if and only if eR = µR.

Proof. See [GMP85, Satz 2.1]. �

Theorem 5.5.7. Let R be a reduced curve singularity. Then we have: µR =
2δR − rR + 1

Proof. See [BG80, Proposition 1.2.1]. �

We start with examples of plane curves:

Example 5.5.8.
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a) Let f = x2 − y3 and R = C{x, y}/〈f〉. Then f is clearly quasi-
homogeneous with weights (3, 2). Since f is reduced and Gorenstein,
in fact, it is even a complete intersection, we expect from the above
theorems that eR = µR and cR = 2δR. A Singular computation
shows that this is true:

ideal I = x2-y3;

curveDeltaInv(I);

1

curveConductorMult(I);

2

curveDeligneNumber(I);

2

milnor(I);

2

From Theorem 5.5.7, we can also deduce that rR = 1. So, as expected,
the curve is irreducible.

b) Another quasi-homogeneous plane curve with two branches is given by
R = C{x, y}/〈f〉, where f = x2 − y4 = (x− y2)(x+ y2). The curve is
reduced and Gorenstein, so we expect the same results as above. If we
do a similar Singular computation, we get: δR = 2, cR = 4, µR = 3
and eR = 3. The number of branches is rR = 2.

c) Now let us consider a curve which is not quasi-homogeneous, namely
f = x4 +x2y2−x2y3−y5 and R = C{x, y}/〈f〉. We can use Singular
to check quasi-homogeneity with Saito's criterion that we mentioned
in the introduction: f is quasi-homogeneous if and only if f lies in the
ideal that is generated by its partial derivatives, see [Sai71].

poly f = x4+x2y2-x2y3-y5;

ideal J = jacob(f);

reduce(f,std(J));

1/4y5

Hence, f is not quasi-homogeneous and we expect from Theorem 5.5.6
and 5.5.5 that eR < µR. From a Singular session, we obtain: δR = 6,
cR = 12, µR = 10 and eR = 9.
In the ring Q[x, y]〈x,y〉, we can factorize f into the two irreducible
factors x2 + y2 and x2 − y3. Therefore, the number of branches of
Q[x, y]〈x,y〉/〈f〉 is 2. But by Theorem 5.5.7, we get that rR = 3. So
in general, the number of analytic branches exceeds the number of
branches over the polynomial ring. This is due to the fact that roots
can be expressed in terms of convergent power series.
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The following examples use more than 2 variables and their computation
takes more time:

Example 5.5.9.

a) Let I = 〈x2 +y2 +z2, x2y−y2z〉 E C{x, y, z} and set R = C{x, y, z}/I.
Then R is a reduced complete intersection and I is homogeneous. Note
that we can use the Singular command is_ci to test if R is a com-
plete intersection. For the invariants, we get the following: δR = 9,
cR = 18, µR = 13 and eR = 13. The number of branches is rR = 6.

b) Another example for a complete intersection is R = C{x, y, z}/I, where
I is given by I = 〈xy − z2, zx− y2〉. We get: δR = 4, cR = 8, µR = 5
and eR = 5. The number of branches is 4.

c) Consider R = C{x, y, z}/I, where I = 〈x2−xz+x2z−xz2, xy−yz, y2+
xz+xz2〉. This is a reduced curve singularity of Cohen-Macaulay type
tR = 2. This can be computed using the Singular command CMtype.
Hence, it is not a Gorenstein curve and our computations yield: δR = 2,
cR = 3, eR = 3. We cannot compute the Milnor number since the
command milnor only works for complete intersections.
First, we see that cR 6= 2δR. Hence, the Gorenstein assumption of
Theorem 5.5.4 is necessary.
Second, we can give bounds for the Milnor number: from Theorem
5.5.5, we can deduce:

3 ≤ µR + 2 · 2− 3 < 3 · 2
⇔ 2 ≤ µR ≤ 4

Taking Theorem 5.5.7 into account, we get that µR = 5−rR. But since
the number of minimal primes of Q[x]〈x〉/I is 2, we get that rR ≥ 2.
Therefore,

µR = 5− rR ≤ 3

and, hence, the Milnor number can be 2 or 3.
The inequality eR ≤ µR + tR − 1 holds for all values of µR. This
inequality is part of a conjecture in [GMP85]. For details, see Section
5.6.

5.6 Outlook

With the algorithms we are able to compute the delta invariant, the multi-
plicity of the conductor and the Deligne number for curve singularities. A
next step would be to �nd more algorithms for other invariants. If we could
compute the number of branches r, then it would be easy to �nd the Milnor
number for reduced curves by the formula: µ = 2δ − r + 1, see Theorem
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5.5.7. We could then establish a test for quasi-homogeneity for Gorenstein
curves. Taking the Cohen-Macaulay type t into account, we could do tests
to prove or disprove the following conjecture: for a smoothable curve singu-
larity, we have: e ≤ µ+ t−1 and equality holds if and only if the singularity
is quasi-homogeneous, see [GMP85].

So far, the Singular algorithms for computing the invariants, especially
the algorithm for computing the Deligne number, depends on many time
consuming computations: it involves many syzygy-computations, the nor-
malization algorithm and the procedure calls division. These algorithms,
especially the syzygy-computations are expensive and time-intensive. They
occur since we need to compute generators of the I-preserving derivation
modules. It would be worth to reduce their number to a minimum and avoid
them if possible. So, an optimization of the algorithms would be desirable.
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A. Basic facts from

commutative algebra

This chapter lists some facts from commutative algebra that were used during
the thesis in several chapters. The collected results treat di�erent topics:
localization, contraction and extension of ideals, �atness, Artinian rings,
product rings and algebras essentially of �nite type.

A.1 Extension and contraction of ideals, localiza-

tion

If we have a ring homomorphism, there is an easy way to extend ideals from
one ring to another or to contract ideals:

De�nition A.1.1. Let R
ϕ→ S be a homomorphism between rings, I an

ideal in R and J an ideal in S.

� The extension of I is the ideal Ie = 〈ϕ(I)〉S E S.

� The contraction of J is the ideal Jc = ϕ−1(J) E R.

Without further assumptions is not in general true that extending and
contracting yields the original ideal. But we can state two inclusions:

Remark A.1.2. Let ϕ be a homomorphism between rings R and S, I an
ideal in R and J an ideal in S. Then we have:

� I ⊆ Iec

� Jce ⊆ J

Proof. We have a sequence of containments:

I ⊆ ϕ−1(ϕ(I)) ⊆ ϕ−1(Ie) = Iec

and since ϕ(ϕ−1(J)) ⊆ J , we get:

Jce = 〈ϕ(Jc)〉 = 〈ϕ(ϕ−1(J))〉 ⊆ J

�
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The next lemma is well-known and establishes a link between the support
of a module and the annihilator:

Lemma A.1.3. For a ring R and a �nitely generated R-moduleM , we have:
Supp(M) = V (AnnR(M)).

Proof. The result is shown in [Stacks, Tag 00L2] �

If we localize at a multiplicatively closed set that intersects with the
annihilator, we get 0:

Lemma A.1.4. Let R be any ring and M an R-module. If S ⊆ R is a
multiplicatively closed set so that S ∩AnnR(M) 6= ∅, then S−1M = 0.

Proof. Let m
s ∈ S

−1M be an arbitrary element and t ∈ S∩AnnR(M). Then
m
s = tm

ts = 0. �

We mentioned before Remark A.1.2 that we need further assumptions
to get the equality Jce = J . If we contract and extend an ideal from a
localization, the relation actually holds.

Lemma A.1.5. Let R be a ring, W a multiplicatively closed subset of R and
J an ideal of W−1R. Let ϕ : R→W−1R be the natural map. Then we have:

Jce = J

Proof. By Remark A.1.2. we only have to show the inclusion "⊇". Therefore,
let x = a

b ∈ J . Then we get that a
1 = bx ∈ J and thus: a ∈ ϕ−1(J) = Jc.

Hence, a1 ∈ J
ce and �nally: a

b = 1
b ·

a
1 ∈ J

ce. �

A.2 Flatness

The next two general results about �at modules and �at ring maps are very
useful. In fact, Proposition A.2.2 is one of the main reasons why completion
and �eld extension are compatible with the invariants from Chapter 4.

Lemma A.2.1. If R is a ring, M an R-module, N a submodule of M and
F a �at module over R, then:

M/N ⊗R F = (M ⊗R F )/(N ⊗R F )

In particular: if S is an R-algebra and I an ideal of S, then S/I ⊗R F =
(S ⊗R F )/I(S ⊗R F )

Proof. The sequence 0 −→ N −→ M −→ M/N −→ 0 is exact. If we take
the tensor product with F , we obtain the exact sequence: 0 −→ N⊗RF −→
M⊗RF −→M/N⊗RF −→ 0. The claim then follows by the homomorphism
theorem. �
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Proposition A.2.2. Let R → S be a �at ring homomorphism, M and N
R-modules and M �nitely presented. Then there is a natural isomorphism
of S-modules:

HomR(M,N)⊗R S ∼= HomS(M ⊗R S,N ⊗R S)

Proof. See [Eis95, Proposition 2.10]. �

As an example for a faithfully �at extension, we can consider any �eld
extension:

Lemma A.2.3. Let k be a �eld and L/k be a �eld extension. Then L is
faithfully �at over k:

Proof. We have to show that a sequence of k-vector spaces M
f−→ N

g−→ P

is exact if and only if M ⊗k L
f⊗id−→ N ⊗k L

g⊗id−→ P ⊗k L is exact.
We know that L admits a k-basis. Let {ei | i ∈ I} denote this basis, then we
can write L as L =

⊕
i∈I kei. Using that the tensor product commutes with

direct sums, the sequence M ⊗k L
f⊗id−→ N ⊗k L

g⊗id−→ P ⊗k L can be written
as: ⊕

i∈I
M

f⊗id−→
⊕
i∈I

N
g⊗id−→

⊕
i∈I

P

The maps f⊗ id and g⊗ id are then just componentwise applications: (f)i∈I
and (g)i∈I . Hence, we obtain the equalities: Im(f ⊗ id) =

⊕
i∈I Im(f) and

Ker(g ⊗ id) =
⊕

i∈I Ker(g) and these two are equal if and only if Im(f) =
Ker(g). �

As a consequence we can derive: if S is a k-algebra and L/k a �eld
extension. Then S → S ⊗k L is �at and if we also take Proposition A.2.2
into account, we can even say more:

Corollary A.2.4. Let L/k be a �eld extension and S an k-algebra. Then
S → S⊗kL is �at and for S-modulesM and N , whereM is �nitely presented,
we have:

HomS⊗kL(M ⊗k L,N ⊗k L) ∼= HomS(M,N)⊗k L

Proof. For any S-module N , we have N ⊗k L = N ⊗S (S ⊗k L). Hence, the
�atness of k → L immediately implies the �atness of S → S ⊗k L.
The same argument allows us to apply Proposition A.2.2:

HomS⊗kL(M ⊗k L,N ⊗k L) = HomS⊗S(S⊗kL)(M ⊗S (S ⊗k L), N ⊗S (S ⊗k L))

∼= HomS(M,N)⊗S (S ⊗k L)

= HomS(M,N)⊗k L �

Flatness also in�uences the Krull dimension of a ring extension:
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Proposition A.2.5. Let R → S be a �at local homomorphism of local
rings. If m denotes the maximal ideal of R, then we have: dimS = dimR+
dimS/mS.

Proof. See [BH93, Theorem A.11]. �

A.3 Artinian rings and product rings

The only fact that we need about Artinian rings is a standard result: they
are all semi-local:

Proposition A.3.1. Artinian rings have only �nitely many maximal ideals.

Proof. See [AM69, Proposition 8.3]. �

Now we focus on product rings. The �rst thing we consider is the be-
haviour of the Jacobson radical. As one expects, the Jacobson radical of a
product is a product itself:

Lemma A.3.2. Let R, S be rings and let J(R), J(S) denote the Jacobson
radical of R and S respectively. Then we have:

J(R× S) = J(R)× J(S)

Proof. Let (r, s) ∈ J(R× S). Then we have for any maximal ideal mR of R:
mR × S is a maximal ideal of R × S. Hence, (r, s) ∈ mR × S and therefore,
r ∈ mR. Thus, r lies in the intersection of all maximal ideals of R, in J(R).
Similarly one can show that s ∈ J(S) and altogether: (r, s) ∈ J(R)× J(S).
For the converse inclusion, let (r, s) ∈ J(R) × J(S). Let m be a maximal
ideal of R× S. Then we have two cases:

1. m = mR × S, where mR is a maximal ideal of R. Then r ∈ mR and
(r, s) ∈ m.

2. m = R×mS , where mS is a maximal ideal of S. This is proven similarly.

Hence, (r, s) ∈ J(R× S). �

If we have a product ring which is local, it cannot have more than one
factor:

Lemma A.3.3. If R is a local ring of the form R = S1 × · · · × Sr, where
the Si are rings, then r = 1.

Proof. This is [AK70, Chapter VII, Lemma 2.8]. �
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If R and S are rings,MR, NR are R-modules andMS , NS are S-modules,
then MR ×MS and NR ×NS are R× S-modules by componentwise R- and
S-multiplication. The next lemma shows that the Hom functor behaves
well under taking products: the homomorphism module of products is the
product of the homomorphism modules.

Lemma A.3.4. Let R, S be rings, MR, NR R-modules and MS, NS S-
modules, then:

HomR(MR, NR)×HomS(MS , NS) ∼= HomR×S(MR ×MS , NR ×NS)

as R× S-modules.

Proof. To establish an isomorphism between the two modules, de�ne

φ : HomR(MR, NR)×HomS(MS , NS)→ HomR×S(MR ×MS , NR ×NS)

(ϕR, ϕS) 7→ ϕR×S ,

where ϕR×S : MR ×MS → NR ×NS maps (a, b) to (ϕR(a), ϕS(b)). Then:

� φ is well de�ned since the ϕR×S are R × S-linear maps. Let (r, s) ∈
R × S and (a, b) ∈ MR ×MS , then using that ϕR is R-linear and ϕS
is S-linear gives:

ϕR×S((r, s) · (a, b)) = ϕR×S((ra, sb))

= (ϕR(ra), ϕS(sb))

= (r · ϕR(a), s · ϕS(b))

= (r, s) · ϕR×S(a, b)

� φ is R × S-linear: Let (r, s) ∈ R × S and ϕR ∈ HomR(MR, NR),
ϕS ∈ HomS(MS , NS). For (a, b) ∈MR ×MS we obtain:

φ((r, s) · (ϕR, ϕS))(a, b) = φ((rϕR, sϕS))(a, b)

= (rϕR(a), sϕS(b))

= (r, s) · (ϕR(a), ϕS(b))

= (r, s) · φ((ϕR, ϕS))(a, b)

� φ is injective: If φ(ϕR, ϕS) is the zero map, it holds for a ∈ MR and
b ∈MS :

(0, 0) = φ((ϕR, ϕS))(a, b) = (ϕR(a), ϕS(b))

So ϕR and ϕS were both zero before.
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� φ is surjective: we construct a preimage for an R×S-linear homomor-
phism ϕ in HomR×S(MR ×MS , NR ×NS). Therefore let

eR : MR →MR ×MS

m 7→ (m, 0)

eS : MS →MR ×MS

m′ 7→ (0,m′)

be the canonical embeddings and

πR : NR ×NS → NR

(n, n′) 7→ n

πS : NR ×NS → NS

(n, n′) 7→ n′

the canonical projections.

For the projection πR it holds

πR((r, s) · (n, n′)) = πR(rn, sn′) = rn = r · πR(n, n′) (A.1)

for r ∈ R, s ∈ S, n ∈ NR, n′ ∈ NS . As a consequence:

πR(ϕ(a, b)) = 1R · πR(ϕ(a, b))

= πR((1R, 0)ϕ(a, b)) = πR(ϕ(a, 0)) = πR(ϕ(eR(a))),

(A.2)

where a ∈ MR, b ∈ MS . This is also true for πS and can be shown in
exactly the same way.

Now de�ne maps ϕR = πR ◦ ϕ ◦ eR : MR → NR and ϕS similarly. For
r ∈ R and a ∈MR we obtain:

ϕR(ra) = πR(ϕ(eR(ra)))

= πR(ϕ((ra, 0)))

= πR((r, 0) · ϕ(a, 0))

(A.1)
= r · πR(ϕ(a, 0))

= r · ϕR(a)

So ϕR is R-linear and thus an element of HomR(MR, NR). And it
can be shown in an analogous way that also ϕS is S-linear. Finally,
(ϕR, ϕS) is the preimage of ϕ:

ϕ((a, b)) = (πR(ϕ(a, b)), πS(ϕ(a, b))
(A.2)
= (ϕR(a), ϕS(b))

And this implies that ϕ = φ(ϕR, ϕS). �
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A.4 Algebras essentially of �nite type

The last consideration in this chapter treats algebras essentially of �nite type.
The class of this algebras is "closed" under passing to algebras of �nite type
and under base-change:

Lemma A.4.1. Let R be a ring and T an R-algebra essentially of �nite
type.

a) If U is an algebra of �nite type over T , then U is essentially of �nite
type over R

b) If U is any R-algebra, then T ⊗R U is essentially of �nite type over U .

Proof. We start with part a): T is essentially of �nite type. Hence, there is
an R-algebra of �nite type, S, and a multiplicatively closed set W in S so
that T = W−1S. We have the maps:

S
ψ→W−1S = T

ϕ→ U

Since U is of �nite type over T , we may replace S by the algebra S[x], which
is still of �nite type over R. Therefore, we can assume, that ϕ is surjective.
Now set I = Ker(ϕ) and J = Ker(ϕ ◦ ψ), then we have: I = W−1J :

If ab ∈ I, then also a
1 = b

1 ·
a
b ∈ I. Hence, ϕ(ψ(a)) = ϕ(a1 ) = 0 and there-

fore: a ∈ J . This implies that a
b = 1

b ·
a
1 ∈W

−1J . For the other inclusion, let
a
b ∈ W

−1J , then a ∈ J and 0 = ϕ(ψ(a)) = ϕ(a1 ). Hence, a1 ∈ I and �nally
a
b ∈ I.

Now we can derive: U = T/I = W−1S/W−1J = W
−1

(S/J), where W
is the image of W under the map S → S/J . Since S/J is of �nite type over
R, the algebra U is essentially of �nite type over R.

To prove part b), we may again write T = W−1S, where S is again an
R-algebra of �nite type. Then S is of the form: R[x]/I and we can deduce:

S ⊗R U = U [x]/IU [x]

Hence, S ⊗R U is of �nite type over U .
The map S⊗RU →W−1S⊗RU maps the multiplicatively closed set W ⊗ 1
to units. So we obtain a map from the universal property of localization:

(W ⊗ 1)−1(S ⊗R U) −→W−1S ⊗R U
a

b
7−→ ab−1

This is actually surjective, since we can write any pure tensor as a product:
e
f ⊗ u = (e ⊗ u) · (f ⊗ 1)−1. Thus, W−1S ⊗R U = T ⊗R U is a quotient of
an algebra essentially of �nite type over U . Now an application of part a)
proves the claim. �
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B. Implementation of

algorithms for computing

invariants

In this chapter, we present the implementation of the algorithms of Section
5.4 in Singular. We may always assume that we start with a radical ideal
in a local polynomial ring Q[x]〈x〉. In Section 5.5, we have shown that the
computation of invariants in Q[x]〈x〉 is su�cient to obtain invariants of curve
singularities. Hence, these algorithms can be used to compute invariants of
curve singularities.

1 ////////////////////////////////////////////////////////////////////////////////////////////////

2 ////////////////////////////////////////////////////////////////////////////////////////////////

3 version =" version curvesing.lib 1.0.0.5 Aug_2015 ";

4 category =" Algebraic geometry ";

5 info="

6 LIBRARY: curvesing.lib A library for computing invariants of curve singularities

7 AUTHOR: Peter Chini , chini@rhrk.uni -kl.de

8

9 OVERVIEW:

10 This library provides a collection of procedures for computing invariants

11 of curve singularities. Invariants that can be computed are:

12 - the delta invariant

13 - the multiplicity of the conductor: the colength of the conductor ideal in the

14 normalization

15 - the Deligne number

16 - the colength of derivations along the normalization: the colength of

17 derivations relative to derivations on the normalization

18

19 In addition , it is possible to compute the conductor of the basering mod I,

20 where I is an ideal.

21

22 THEORY: P. Chini , Computing the Deligne number of curve singularities and an algorithmic

23 framework for differential algebras in SINGULAR , 2015

24

25 KEYWORDS: curve singularity;invariants;deligne number

26

27 PROCEDURES:

28 curveDeltaInv(I); delta invariant of curve singularity defined by I

29

30 normalConductor(I); conductor of basering mod I as ideal in the basering

31 curveConductorMult(I); colength of conductor in normalization of curve sing. defined by I

32

33 curveDeligneNumber(I); Deligne number of curve sing. defined by I
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34 curveColengthDerivations(I); colength of derivations of curve sing. defined by I

35 ";

36 ////////////////////////////////////////////////////////////////////////////////////////////////

37 ////////////////////////////////////////////////////////////////////////////////////////////////

38

39

40 ////////////////////////////////////////////////////////////////////////////////////////////////

41 ////////////////////////////////////////////////////////////////////////////////////////////////

42 // Initialization of library //

43 ////////////////////////////////////////////////////////////////////////////////////////////////

44 ////////////////////////////////////////////////////////////////////////////////////////////////

45

46

47 static proc mod_init ()

48 {

49

50 // Libraries needed

51 LIB "homolog.lib";

52 LIB "normal.lib";

53

54 }

55

56

57 ////////////////////////////////////////////////////////////////////////////////////////////////

58 ////////////////////////////////////////////////////////////////////////////////////////////////

59 // Computation of invariants //

60 ////////////////////////////////////////////////////////////////////////////////////////////////

61 ////////////////////////////////////////////////////////////////////////////////////////////////

62

63

64 ////////////////////////////////////////////////////////////////////////////////////////////////

65 //-------------------------------------- Delta invariant -------------------------------------//

66 ////////////////////////////////////////////////////////////////////////////////////////////////

67

68

69 proc curveDeltaInv(ideal I, list #)

70 "USAGE: curveDeltaInv(I); I ideal

71 curveDeltaInv(I,L); I ideal , L = normal(I," useRing","prim","wd")

72 ASSUME: - I is a radical ideal and defines a curve: basering mod I

73 - the basering is a local ring

74 - the basefield is perfect

75 RETURN: the delta invariant of the curve singularity defined by I

76 NOTE: output -1 means: delta invariant is infinite

77 KEYWORDS: delta invariant; normalization

78 SEE ALSO: curveConductorMult; curveDeligneNumber

79 EXAMPLE: example curveDeltaInv; shows an example"

80 {

81

82 if(size (#) > 0){

83 list norma = #;

84 }else{

85 // Compute the normalization with delta invariants

86 list norma = normal(I," useRing","prim","wd");

87 }

88

89 // Pick the total delta invariant

90 int delt = norma [3][2];

91 return(delt);

92

93 }

94 example

95 {
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96 "EXAMPLE :"; echo = 2;

97 ring R = 0,(x,y,z),ds;

98

99 ////////////////////////////

100 // Finite delta invariant //

101 ////////////////////////////

102

103 ideal I = x2y -y2z ,x2-y2+z2;

104 curveDeltaInv(radical(I));

105

106 //////////////////////////////

107 // Infinite delta invariant //

108 //////////////////////////////

109

110 ideal J = xyz;

111 curveDeltaInv(radical(J));

112 }

113

114

115 ////////////////////////////////////////////////////////////////////////////////////////////////

116 //-------------------------------- Conductor and multiplicity --------------------------------//

117 ////////////////////////////////////////////////////////////////////////////////////////////////

118

119

120 proc normalConductor(ideal I, list #)

121 "USAGE: normalConductor(I); I ideal

122 normalConductor(I,L); I ideal , L = normal(I," useRing","prim","wd")

123 ASSUME: I is a radical ideal

124 RETURN: conductor of basering mod I as ideal in the basering

125 REMARKS: The procedures makes use of the minimal primes and

126 the generators of the normalization given by the normalization algorithm.

127 KEYWORDS: conductor; normalization

128 SEE ALSO: curveConductorMult; normal

129 EXAMPLE: example normalConductor; shows an example"

130 {

131

132 if(size (#) > 0){

133 list norma = #;

134 }else{

135 // Compute the normalization with delta invariants

136 list norma = normal(I," useRing","prim","wd");

137 }

138

139 // Prepare computation

140 int r = size(norma [1]);

141 int i;

142 def savering = basering;

143 list min_prime;

144 list DEN;

145 def S;

146

147 // List of all minimal primes

148 for(i = 1; i <= r; i++){

149 S = norma [1][i];

150 min_prime[i] = conductorMinPrime(S);

151 }

152

153 // List of ideals U generating Norm(R/P_i)

154 list U = norma [2];

155

156 // List of denominators DEN

157 r = size(U);
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158 for(i = 1; i <= r; i++){

159 DEN[i] = U[i][size(U[i])];

160 }

161

162 // Compute the conductor C

163 ideal C = 1;

164 ideal C_current;

165 ideal min_prime_isect;

166

167 for(i = 1; i <= r; i++){

168

169 // Intersection of min_prime_j , j!=i

170 min_prime_isect = conductorIdealIntersect(min_prime ,i);

171

172 // Compute the quotient

173 C_current = std(quotient(min_prime[i] + DEN[i]* min_prime_isect , U[i]));

174

175 // Intersect it with previous computation

176 C = intersect(C,C_current );

177 }

178

179 return(std(C));

180

181 }

182 example

183 {

184 "EXAMPLE :"; echo = 2;

185

186 ///////////////////////////////////////////

187 // Computation of small conductor ideals //

188 ///////////////////////////////////////////

189

190 ring R = 0,(x,y,z),ds;

191 ideal I = x2y2 - z;

192 normalConductor(I);

193 // The conductor is the whole ring - so the ring is normal

194 // We can also see this using the delta invariant:

195 curveDeltaInv(I);

196

197 ring S = 0,(a,b,c),dp;

198 ideal J = abc;

199 normalConductor(J);

200 // The conductor is not the whole ring - so it is not normal

201 // We can also see this using the delta invariant , which is even infinite

202 curveDeltaInv(J);

203

204 kill R,S;

205

206 /////////////////////////////////////

207 // Computation of a bigger example //

208 /////////////////////////////////////

209

210 ring R = 0,(x,y,z,t),ds;

211 ideal I = xyz - yzt , x2y3 - z2t4;

212 I = std(radical(I));

213 // Ideal I

214 I;

215 // Conductor

216 normalConductor(I);

217 }

218

219
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220 ////////////////////////////////////////////////////////////////////////////////////////////////

221

222

223 static proc conductorMinPrime(def S)

224 "USAGE: conductorMinPrime(S); S ring

225 ASSUME: S is a polynomial ring with ideal norid and S/norid is the normalization of

226 basering mod P, where P is a minimal prime of I

227 RETURN: the ideal P

228 REMARKS: The algorithm intersects norid with the basering.

229 NOTE: the algorithm is for interior use only. We apply it to avoid a second computation

230 of the minimal primes

231 KEYWORDS: minimal primes; normalization

232 SEE ALSO: conductorIdealIntersect"

233 {

234

235 // Variables of basering as product

236 int n = nvars(basering );

237 int i;

238 poly var_base = 1;

239 for(i = 1; i <= n; i++){

240 var_base = var_base*var(i);

241 }

242

243 // Switch to normalization

244 def savering = basering;

245 setring S;

246 poly var_base = imap(savering ,var_base );

247

248 // Variables of S as product

249 poly var_ext = 1;

250 n = nvars(basering );

251 for(i = 1; i <= n ; i++){

252 var_ext = var_ext*var(i);

253 }

254

255 // Variables to eliminate

256 poly var_elim = var_ext/var_base;

257

258 // Compute norid intersect basering = minimal prime

259 ideal min_prime = eliminate(norid ,var_elim );

260

261 // Switch to R and return

262 setring savering;

263 ideal min_prime = imap(S,min_prime );

264 return(min_prime );

265

266 }

267

268

269 ////////////////////////////////////////////////////////////////////////////////////////////////

270

271

272 static proc conductorIdealIntersect(list id, int miss)

273 "USAGE: conductorIdealIntersect(id,miss); id list , miss int

274 ASSUME: id is a list of ideals

275 RETURN: the intersection of all ideals in id except the one chosen via miss

276 NOTE: - the index can be chosen outside the list

277 - the empty intersection is the whole ring

278 KEYWORDS: intersection"

279 {

280

281 int n = size(id);
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282 ideal in_sect = 1;

283 int i;

284

285 // Intersect ideals

286 for(i = 1; i <= n; i++){

287 if(i != miss){

288 in_sect = intersect(in_sect ,id[i]);

289 }

290 }

291

292 return(in_sect );

293

294 }

295

296

297 ////////////////////////////////////////////////////////////////////////////////////////////////

298

299

300 proc curveConductorMult(ideal I, list #)

301 "USAGE: curveConductorMult(I); I ideal

302 curveConductorMult(I,L); I ideal , L = normal(I," useRing","prim","wd")

303 ASSUME: - I is a radical ideal and defines a curve: basering mod I

304 - the basering is a local ring

305 - the basefield is perfect

306 RETURN: the multiplicity of the conductor of the curve singularity defined by I:

307 the colength of the conductor in the normalization

308 KEYWORDS: conductor; multiplicity

309 SEE ALSO: normalConductor

310 EXAMPLE: example curveConductorMult; shows an example"

311 {

312

313 if(size (#) > 0){

314 list norma = #;

315 }else{

316 // Compute the normalization with delta invariants

317 list norma = normal(I," useRing","prim","wd");

318 }

319

320 // delta invariant

321 int delta = curveDeltaInv(I,norma );

322 // If the delta invariant is infinite , the conductor multiplicity is as well

323 if(delta == -1){

324 return (-1);

325 }

326

327 // Conductor

328 ideal C = normalConductor(I,norma);

329 int c_dim = vdim(std(C));

330 if(c_dim == -1){

331 return (-1);

332 }

333

334 // Return conductor multiplicity

335 return(vdim(std(C)) + delta);

336

337 }

338 example

339 {

340 "EXAMPLE :"; echo = 2;

341

342 //////////////////////////////////////////////

343 // Mutltiplicity of the conductor of curves //
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344 //////////////////////////////////////////////

345

346 ring R = 0,(x,y,z),ds;

347

348 // Example 1:

349 ideal I = x2-y4z ,z3y2+xy2;

350 I = std(radical(I));

351 curveConductorMult(I);

352

353 // Example 2:

354 ideal I = x*(y+z)^3 - y3, x2y2 + z5;

355 I = std(radical(I));

356 curveConductorMult(I);

357

358 kill R;

359

360 ////////////////////////////////////////////////////////

361 // Mutltiplicity of the conductor of Gorenstein curve //

362 ////////////////////////////////////////////////////////

363

364 ring R = 0,(x,y),ds;

365 ideal I = xy;

366

367 // In such a case , the conductor multiplicity c satisfies: c = 2* delta

368 // Delta invariant:

369 curveDeltaInv(I);

370 // Conductor Multiplicity:

371 curveConductorMult(I);

372 }

373

374

375 ////////////////////////////////////////////////////////////////////////////////////////////////

376 //-------------------------------------- Deligne number --------------------------------------//

377 ////////////////////////////////////////////////////////////////////////////////////////////////

378

379

380 proc curveDeligneNumber(ideal I, list #)

381 "USAGE: curveDeligneNumber(I); I ideal

382 curveDeligneNumber(I,L); I ideal , L = normal(I," useRing","prim","wd")

383 ASSUME: - I is a radical ideal and defines a curve: basering mod I

384 - the basering is a local ring

385 - the basefield has characteristic 0

386 RETURN: the Deligne number of the curve singularity defined by I

387 REMARKS: The Deligne number e is defined by: e = 3delta - m.

388 So the algorithm splits the computation into two parts: one part computes the delta

389 invariant , the other part the colength of derivations m.

390 KEYWORDS: deligne number; invariant

391 SEE ALSO: curveColengthDerivations , curveDeltaInv

392 EXAMPLE: example curveDeligneNumber; shows an example"

393 {

394

395 if(size (#) > 0){

396 list norma = #;

397 }else{

398 // Compute the normalization with delta invariants

399 list norma = normal(I," useRing","prim","wd");

400 }

401

402 int delt = curveDeltaInv(I,norma );

403 int m = curveColengthDerivations(I,norma);

404 return (3* delt - m);

405
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406 }

407 example

408 {

409 "EXAMPLE :"; echo = 2;

410

411 //////////////////////////////

412 // Deligne number of curves //

413 //////////////////////////////

414

415 // Example 1:

416 ring R = 0,(x,y,z),ds;

417 ideal I = x2-y4z ,z3y2+xy2;

418 I = std(radical(I));

419 curveDeligneNumber(I);

420

421 // Example 2:

422 ring S = 0,(x,y),ds;

423 ideal I = (x+y)*(x2 -y3);

424 curveDeligneNumber(I);

425

426 // Example 3:

427 ideal J = (x2 -y3)*(x2+y2)*(x-y);

428 curveDeligneNumber(J);

429 // Let us also compute the Milnor number of this complete intersection:

430 milnor(J);

431

432 // We see that the Milnor number is bigger than the Deligne number. Hence , this

433 // curve cannot be quasi homogeneous. This can also be verified by Saito 's criterion:

434 reduce(J[1],std(jacob(J[1])));

435 }

436

437

438 ////////////////////////////////////////////////////////////////////////////////////////////////

439

440

441 proc curveColengthDerivations(ideal I, list #)

442 "USAGE: curveColengthDerivations(I); I ideal

443 curveColengthDerivations(I,L); I ideal , L = normal(I," useRing","prim","wd")

444 ASSUME: - I is a radical ideal and defines a curve: basering mod I

445 - the basering is a local ring

446 - the basefield has characteristic 0

447 RETURN: the colength of derivations of the curve singularity defined by I:

448 the colength of derivations relative to derivations on the normalization

449 KEYWORDS: deligne number; invariants; colength of derivations

450 SEE ALSO: curveColengthDerivationsComp , curve Ddim

451 EXAMPLE: example curveColengthDerivations; shows an example"

452 {

453

454 if(size (#) > 0){

455 list norma = #;

456 }else{

457 // Compute the normalization with delta invariants

458 list norma = normal(I," useRing","prim","wd");

459 }

460

461 int r = size(norma [1]);

462 int i,j;

463 ideal U,A,B;

464 module Der_P;

465 def S;

466 def savering = basering;

467
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468 // List of minimal primes and their derivation modules

469 list min_prime;

470 list der_mod;

471

472 // Colength of derivations of any branch , m_delta and total colength of derivations

473 int m_i;

474 int m_delta;

475 int ext_number;

476

477 // Go through the irreducible components and compute thecolength of derivations m_i

478 for(i = 1; i <= r; i++){

479 // Derivations preserving the minimal primes

480 S = norma [1][i];

481 U = norma [2][i];

482

483 min_prime[i] = conductorMinPrime(S);

484 der_mod[i] = find_der(min_prime[i]);

485 Der_P = der_mod[i];

486

487 // Switch to normalization of R/P and compute colength of derivations

488 setring S;

489 ideal U = imap(savering ,U);

490 module Der_P = imap(savering ,Der_P);

491

492 m_i = curveColengthDerivationsComp(Der_P ,U,norid);

493

494 // Add colength of derivations of this branch to total colength of derivations

495 ext_number = ext_number + m_i;

496 setring savering;

497 }

498

499 // Now compute m_delta via curveDdim

500 A = min_prime [1];

501 B = std (1);

502

503 for(i = 2; i <= r; i++){

504 A = intersect(A,B);

505 B = min_prime[i];

506 m_delta = m_delta + curveDdim(A,find_der(A),B,find_der(B));

507 }

508

509 // Add this to the colength of derivations

510 ext_number = ext_number + m_delta;

511 return(ext_number );

512

513 }

514 example

515 {

516 "EXAMPLE :"; echo = 2;

517

518 ///////////////////////////////////////

519 // colength of derivations of curves //

520 ///////////////////////////////////////

521

522 // Example 1:

523 ring R = 0,(x,y,z),ds;

524 ideal I = x2-y4z ,z3y2+xy2;

525 I = std(radical(I));

526 curveColengthDerivations(I);

527

528 // Example 2:

529 ring S = 0,(x,y),ds;
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530 ideal I = (x+y)*(x2 -y3);

531 curveColengthDerivations(I);

532

533 // Example 3:

534 ideal J = (x2-y3)*(x2+y2)*(x-y);

535 curveColengthDerivations(J);

536 }

537

538

539 ////////////////////////////////////////////////////////////////////////////////////////////////

540

541

542 static proc curveColengthDerivationsComp(module Der_P , ideal U, ideal relid)

543 "USAGE: curveColengthDerivationsComp(Der_P ,U,relid ); Der_P module , U ideal , relid ideal

544 ASSUME: let R denote the localized polynomial ring and I the ideal of the procedure

545 curveColengthDerivations , then assume:

546 - the basering is the normalization of R/P, where P is a minimal prime ideal of I

547 - Der_P is the module of P-preserving derivations

548 - U containts the generators of the normalization of R/P

549 - relid is the ideal of relations that hold in the normalization of R/P

550 RETURN: the colength of derivations of the curve R/P:

551 the colength of derivations relative to derivations on the normalization

552 NOTE: the procedure is for interior use only - it is part of the computation of

553 the total colength of derivations

554 KEYWORDS: colength of derivations

555 SEE ALSO: curveAdjustModule , curveExtDerModule"

556 {

557

558 int k;

559

560 // Adjust the generators of Der_P to the new variables T(1),...,T(k),x(1),...,x(n)

561 // if there are new variables - check number of blocks

562 if(size(ringlist(basering )[3]) >= 3){

563 k = size(ringlist(basering )[3][1][2]);

564 Der_P = curveAdjustModule(Der_P ,k);

565 }

566

567 // Extend the derivation module to the normalization

568 Der_P = curveExtDerModule(Der_P ,U,relid);

569

570 // Derivations preserving the relation ideal

571 module Der_relid = find_der(relid);

572

573 // Quotient module with relations given by relid

574 Der_P = Der_P + relid*freemodule(nvars(basering ));

575 module quotient_mod = modulo(Der_relid ,Der_P);

576 k = vdim(std(quotient_mod ));

577

578 if(k == -1){

579 ERROR(" Colength of derivations not finite !");

580 }

581

582 return(k);

583

584 }

585

586

587 ////////////////////////////////////////////////////////////////////////////////////////////////

588

589

590 static proc curveExtDerModule(module Der_P , ideal U, ideal relid)

591 "USAGE: curveExtDerModule(Der_P ,U,relid); Der_P module , U ideal , relid ideal

126



592 ASSUME: let R denote the localized polynomial ring and I the ideal of the procedure

593 curveColengthDerivations , then assume:

594 - the basering is the normalization of R/P, where P is a minimal prime ideal of I

595 - Der_P is the module of P-preserving derivations

596 - U containts the generators of the normalization of R/P

597 - relid is the ideal of relations that hold in the normalization of R/P

598 RETURN: The derivation module lifted to the normalization

599 REMARKS: the generators of Der_P are extended via the quotient rule

600 NOTE: the procedure is for interior use only - it is part of the computation of

601 the total colength of derivations

602 KEYWORDS: derivations; extend derivations

603 SEE ALSO: curveColengthDerivationsComp"

604 {

605

606 int k = size(Der_P);

607 int n = size(U) - 1;

608 int i,j;

609

610 module M_ext;

611 vector delt;

612 vector delt_ext;

613

614 poly g = (U[n+1])^2;

615 poly f;

616 poly Un = 1;

617 matrix D[k][n];

618 matrix G[k][n];

619 list temp_div;

620

621 for(i = 1; i <= k; i++){

622 delt = Der_P[i];

623

624 // Extend to new variables by quotient rule

625 for(j = 1; j <= n; j++){

626 f = vecDerivationEval(delt ,U[j])*U[n+1] - vecDerivationEval(delt ,U[n+1])*U[j];

627

628 // Division

629 temp_div = division(f,ideal(g) + relid);

630

631 // Units

632 D[i,j] = temp_div [3][1 ,1];

633 // Unit Un is product of all D[i][j]

634 Un = Un*D[i,j];

635

636 // Factor of dividing by g

637 G[i,j] = temp_div [1][1 ,1];

638 }

639 }

640

641 // Extension of the generating derivations

642 for(i = 1; i <= k; i++){

643 delt_ext = Un*Der_P[i];

644

645 // Now add the images of the new variables multiplied by the units

646 for(j = 1; j <= n; j++){

647 delt_ext = delt_ext + (Un / D[i,j])*G[i,j]*gen(j);

648 }

649

650 M_ext[i] = delt_ext;

651 }

652

653 return(M_ext);
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654

655 }

656

657

658 ////////////////////////////////////////////////////////////////////////////////////////////////

659

660

661 static proc curveAdjustModule(module M, int k)

662 "USAGE: curveAdjustModule(M,k); M module , k int

663 RETURN: the module M with shifted (by k) generators

664 NOTE: the procedure is for interior use only - it is part of the computation of

665 the total colength of derivations

666 KEYWORDS: adjust module

667 SEE ALSO: curveColengthDerivationsComp"

668 {

669

670 module M_copy = M;

671 int n = size(M);

672 int vs ,i,j;

673 vector v,w;

674

675 // Adjust dimension of generators

676 for(i = 1; i <= n; i++){

677 v = M_copy[i];

678 vs = nrows(v);

679

680 for(j = 1; j <= vs; j++){

681 w = w + v[j]*gen(j+k);

682 }

683

684 M[i] = w;

685 w = 0;

686 }

687

688 return(M);

689

690 }

691

692

693 ////////////////////////////////////////////////////////////////////////////////////////////////

694

695

696 static proc curveDdim(ideal I, module DI, ideal J, module DJ)

697 "USAGE: curveDdim(I,DI ,J,DJ); I,J ideal , DI,DJ module

698 ASSUME: DI are the I-preserving derivations and DJ are the J-preserving derivations

699 RETURN: d(I,J) = dim_k (DI + DJ / (I+J)*Der(R))

700 NOTE: the procedure is part of the computations of the colength of derivations

701 KEYWORDS: derivation module; logarithmic derivations

702 SEE ALSO: curveColengthDerivations"

703 {

704

705 module M = DI+DJ;

706 module N = (I+J)* freemodule(nvars(basering ));

707 module H = modulo(M,N);

708 int k = vdim(std(H));

709

710 if(k == -1){

711 ERROR("d-dimension not finite !");

712 }

713

714 return(k);

715
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716 }

717

718

719 ////////////////////////////////////////////////////////////////////////////////////////////////

720

721

722 static proc vecDerivationEval(vector delt , poly f)

723 "USAGE: vecDerivationEval(delt ,f); delt vector , f poly

724 ASSUME: delt does not have more rows than the number of variables in the basering

725 RETURN: the image of f under delt , if we consider delt as derivation

726 REMARKS: We identify derivations as vectors

727 NOTE: - the procedure is for interior use only - it is part of the computation of

728 the total colength of derivations

729 - it is used to apply the quotient rule

730 KEYWORDS: derivation

731 SEE ALSO: curveExtDerModule"

732 {

733

734 int n = nrows(delt);

735 int i;

736 poly eval_;

737

738 for(i = 1; i <= n; i++){

739 eval_ = eval_ + delt[i]*diff(f,var(i));

740 }

741

742 return(eval_);

743

744 }

745

746

747 ////////////////////////////////////////////////////////////////////////////////////////////////

748

749

750 static proc find_der(ideal I)

751 "USAGE: find_der(I); I ideal

752 RETURN: generators of the module of logarithmic derivations

753 REMARK: Algorithm by R. Epure , Homogeneity and Derivations on Analytic Algebras , 2015"

754 {

755 // Dummy variables and Initialization:

756 int k,i,n,m;

757

758 // generating matrix for syzygie computation:

759 n = nvars(basering );

760 m = size(I);

761 ideal j = jacob(I);

762

763 matrix M=matrix(j,m,n);

764 for (i = 1; i <= m; i++){

765 M = concat(M,diag(I[i],m));

766 }

767 module C = syz(M);

768 module D;

769

770 for(i = 1; i <= size(C); i++){

771 D = D + C[i][1..n];

772 }

773

774 // Clearing memory

775 kill j;

776 kill C;

777 kill M;
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778 return(D);

779 }

780

781

782 ////////////////////////////////////////////////////////////////////////////////////////////////

783 ////////////////////////////////////////////////////////////////////////////////////////////////
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C. A Singular implementation

of di�erential algebras

This chapter is a short introduction to the implementation of di�erential
algebras in Singular. The library containing the source code is called
difform.lib and it can be used to compute with di�erential forms, di�er-
ential algebras and derivations in Singular without leaving the basering.

C.1 Representation and construction of di�erential

algebras

We want to represent universal di�erential algebras over quotients of polyno-
mial rings in Singular. Therefore, we need a structural result: in Proposi-
tion 3.2.13, it was shown that the universal di�erential algebra is the exterior
algebra of the module of Kähler di�erentials. Since we know how this mod-
ule looks like in the case, where R = k[x]/I, we can deduce as in Example
3.2.15: if I = 〈f1, . . . , fr〉, then

ΩR/k =
∧

Ω1
R/k =

∧(
n⊕
i=1

k[x]dxi /〈df1, . . . , dfr, f1, . . . , fr〉k[x]

)

Hence, we have to �nd a representation for the exterior algebra of the module⊕n
i=1 k[x]dxi /〈df1, . . . , dfr, f1, . . . , fr〉k[x]. Since this is a non-commutative

ring, we represent it as such: it will be the ring with commutative variables
x1, . . . , xn and non-commutative variables Dx1, . . . , Dxn modulo the relations:
(Dxi)

2 = 0, DxiDxj = −DxjDxi for i 6= j and f1, . . . , fr, df1, . . . , dfr. If the
basering has name R, then the di�erential algebra will be stored with name
Omega_R. The monomial ordering of the basering variables x1, . . . , xn is pre-
served, the D-variables are ordered by dp. We make use of a block ordering
in Omega_R, where the D-variables are in the �rst block and the xi are in the
second block. We get that elements of ΩR/k, so called di�erential forms, can
be represented as polynomials in Omega_R.
The described construction is done by the procedure diffAlgebraStructure.
It gets called by the user-available procedure diffAlgebra. The di�erential

131



algebra is assigned to the basering via an attribute. One can always access
the name of the di�erential algebra by calling

attrib(basering,�diffAlgebra�)

Di�erential forms are polynomials in Omega_R. So computing with them
would be possible if we leave the basering. Since this approach is not intu-
itive, we decided to make di�erential forms available over R itself with two
new types:

� The type difvar carries as an attribute a string and represents the
forms dx1, . . . , dxn.

� The type difform carries as an attribute a polynomial and represents
more general di�erential forms of ΩR/k

After constructing the di�erential algebra in the procedure diffAlgebra, the
procedure diffAlgebraGens is called. This generates the forms dx1, . . . , dxn
as objects of type difvar: it creates the objects dxi and stores in the string
attribute of dxi the variable Dxi. Hence, they are available over the basering
since objects of user-de�ned types are always global. In Section C.2, we will
explain how objects of type difvar and difform are constructed and how
we can do computations with them.

Two important structural procedures for computing with di�erential al-
gebras are diffAlgebraCheck and diffAlgebraSwitch. The �rst procedure
tests if the di�erential algebra of the basering R has already been constructed.
This is done via the attribute attrib(basering,�diffAlgebra�). If the
di�erential algebra has not been constructed yet, the attribute is not set.
Hence, the procedure aborts with an error. The second procedure is used to
change the basering to the di�erential algebra: it changes the ring from R to
Omega_R. This is for example needed when we de�ne arithmetic operations
of objects of type difform.
Other available structural procedures for di�erential algebras are:

� diffAlgebrachangeOrd: a procedure which can be called if the cur-
rent basering is Omega_R. It constructs a ring with the structure of the
di�erential algebra but with changed monomial ordering. This is use-
ful, when we want to sort lists of di�erential forms with respect to a
particular ordering as in the print-procedure.

� diffAlgebraRelations: returns the relation ideal of the non-commutative
quotient ring Omega_R as a list of objects of type difform.

� diffAlgebraListGens returns a list, sorted by the monomial ordering
on Omega_R, of the generators of the di�erential algebra as module over
the basering: all products

dxν1 ∧ · · · ∧ dxνj , 1 ≤ ν1 < · · · < νj ≤ n
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If R is the polynomial ring, then the di�erential algebra ΩR/k is free
and the procedure returns the basis of ΩR/k as R-module. There is also
the option to choose a particular degree. Then the procedure returns
the generators of a graded part of ΩR/k.

Further available procedures which concern the structure of the di�eren-
tial algebra Omega_R are type casts. They can be found under the caption
Type casts and conversions in the difform.lib.

C.2 Construction and basic operations of di�eren-

tial forms

First, we make precise how we can construct objects of type difform. The
procedure difformFromType constructs di�erential forms from several input
types:

� difvar

� poly

� int

� bigint

� number

� vector

Let dxi be of type difvar. In fact, these are the only objects of type
difvar which can occur in the difform.lib. Then the constructor-subroutine
difformFromDifvar is called. It creates an difform-object df and sets the
polynomial attribute of df to Dxi.
A big advantage of this type cast is that we do not need special arithmetic
operations for the type difvar. We just cast elements of this type directly
to di�erential forms and can therefore apply procedures, written for the type
difform.
If the input is an object f of type poly, the subroutine difformFromPoly

is called. It maps the polynomial f to the di�erential algebra Omega_R and
stores it in a difform-object df.
For vector-input, we identify the di�erential algebra ΩR/k as a quotient of
the free module R2n , see Example 3.2.15. A given vector v is converted to an
object of type difform by the procedure difformFromVector. First, a list
GEN_list, containing the 2n generators of ΩR/k as R-module, is computed
via difformListGens. Then any standard basis vector ei of R2n is identi-
�ed with the i-th generator: GEN_list[i]. The resulting di�erential form is
constructed as:

∑2n

i=1 v[i] · GEN_list[i].

133



For the other listed types, we also use the constructor difformFromPoly.

Now we consider some basic structural procedures which allow us to de-
compose or print di�erential forms:

A very important routine for objects of type difform is difformCoef.
Any di�erential form ω ∈ ΩR/k can be written as a sum:

ω =

n∑
j=0

∑
1≤ν1<···<νj≤n

sν1...νjdxν1 ∧ · · · ∧ dxνj (C.1)

The procedure difformCoef returns the coe�cients sν1...νj ∈ R and the cor-
responding R-module generators dxν1 ∧ · · · ∧ dxνj of ΩR/k in a list. In fact,
we apply the command coef in the di�erential algebra Omega_R to get the
coe�cients. Then we map the results back to R.

An application of difformCoef is a type cast from difform to string.
This is realized by the procedure difformToString. First, the routine ap-
plies difformCoef to a given di�erential form df to obtain a decomposition
into coe�cients and generators as in (C.1). Then, the generators get or-
dered with respect to a monomial ordering, which may be changed. Finally,
a string is constructed which contains the ordered generators and the corre-
sponding coe�cients. The procedure difformPrint makes use of this and
allows us to print di�erential forms.

Another useful procedure concerning the structure of di�erential forms
is difformIsGen. It provides a test for di�erential forms: the procedure
returns 1 if the given object of type difform is an R-module generator of
the di�erential algebra ΩR/k, a product dxν1 ∧ · · · ∧ dxνj . Otherwise, 0 is
returned. Such products are identi�ed via difformCoef: if the returned list
has only one entry and the corresponding coe�cient is 1, then the given
object already was a generator.

Mapping polynomials from a ring R to a ring S is usually done using imap
or fetch in Singular. To provide a similar tool for di�erential forms, we
have constructed the procedures difformImap and difformFetch.

� Like imap, the procedure difformImapmaps variables to variables with
equivalent names.

� Like fetch, the procedure difformFetch maps variables to variables
with equivalent positions.

Note that the D-variables of ΩR/k are always mapped to D-variables of ΩS/k.
The same holds for the ring variables.
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The difform.lib provides basic arithmetic operations for di�erential
forms. The idea of those procedures is always the same: since we know
that a di�erential form df carries as content a polynomial g in Omega_R, we
change the ring to Omega_R and perform polynomial operations on g there.
From the result, we construct a new di�erential form and return to the ring
R.
Supported operations are: addition, subtraction, negation, multiplication,
taking powers, division, equality, non-equality, greater and smaller - with
respect to a monomial ordering and reduction with respect to the zero ideal.
The latter is helpful when we compute over a quotient ring since the Singu-
lar-option qringNF does not support the ring-change that we perform.
For most of this arithmetic operations, we have installed shortcuts - this
supports the intuitive use of the library. A valid expression would be:

ring R = 0,(x,y,z),dp;

diffAlgebra();

difform df = dx + dy*dz + (4x-y2)*dx*dz;

Further operations for objects of type difform concern the degree of
di�erential forms. Since ΩR/k is graded, the degree of a general element
ω ∈ ΩR/k is the highest degree of a homogeneous element occurring in ω.
The procedure difformDeg determines this degree by applying the Singu-
lar command deg to the polynomial content g of a difform-object df with
extra weights: we set the weights of the ring variables x1, . . . , xn to 0 since
they do not contribute to the degree in ΩR/k. The weights of the D-variables
is set to 1. Then the command deg returns the desired degree.
There is also a procedure difformIsHomog which tests a di�erential form to
be homogeneous. The idea is similar to above: we use the command homog

and apply it to the polynomial content of the given di�erential form using
the same weights as above.
As a combination of both mentioned procedures, we can test if a di�erential
form is homogeneous of a given degree. Therefore, we use difformIsHomogDeg.
It is also possible to compute a homogeneous decomposition of a di�erential
form df]. This is done by the procedure difformHomogDecomp. It computes
a decomposition, using difformCoef and since we can test the degree of the
generators, we can build the homogeneous decomposition.

The last consideration in this section are two procedures that deal with
lists of di�erential forms:

� The procedure difformListContains uses that we can determine if
two di�erential forms are equal. It returns 1 (or an index) if a given
di�erential form is in a given list of di�erential forms. Otherwise, it
returns 0.
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� The procedure difformListSort is an implementation of insertion sort
for lists of di�erential forms.

C.3 Computations with the universal derivation

This short section explains how the implementation of the universal deriva-
tion works. We will always denote the universal derivation by d and consider
it as a map between graded parts of the di�erential algebra:

d : Ωj
R/k → Ωj+1

R/k

For the theory, we refer to Example 3.2.3.
We provide two implementations, one for the polynomial case and one for
the general case:

1. The procedure difformUnivDer computes the universal derivation of
polynomials. The idea is simple: we build all partial derivations ∂f

∂xi
with the command diff, multiply them by the di�erential forms dxi
and sum them up. We obtain

∑n
i=1

∂f
∂xi
dxi and this is the universal

derivation applied to f . This was shown in Section 3.1.

2. The procedure difformDiff decomposes a given di�erential form ω by
using difformCoef. Then we can write ω as

ω =
n∑
j=0

∑
1≤ν1<···<νj≤n

sν1...νjdxν1 ∧ · · · ∧ dxνj

In Example 3.2.3, it was shown that:

dω =

n∑
j=0

∑
1≤ν1<···<νj≤n

dsν1...νj ∧ dxν1 ∧ · · · ∧ dxνj

Therefore, the procedure applies difformUnivDer to the polynomials
sν1...νj , multiplies this by dxν1 ∧ · · · ∧ dxνj and sums everything up.
The result is exactly dω.

For polynomials it is not important which procedure is applied. For input
of type poly, they have exactly the same output.

C.4 Representation and construction of derivations

Like for the di�erential algebras and di�erential forms, we explain in this
section how we can represent derivations on a computer. We will make use
of the already de�ned type difform and the isomorphism

HomR(Ω1
R/k, R) ∼= Derk(R)
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This allows us to identify derivations as maps from Ω1
R/k to R. Such maps

are uniquely determined by their images of the dxi. Therefore, we introduce
a new type derivation. Objects of this type contain a list of lists L. The
ideal is the following: L[1][i] is an R-module generator of Ω1

R/k. The image
of this generator is stored in L[2][i].

Derivations can be constructed via the procedure derivationFromType.
It checks the type of the input argument and if this is of type list, the
subroutine derivationFromList is called. This calls a further subroutine,
derivationCheckList, which checks if the given list, call it L, has the right
form for being a derivation. It is required that L determines exactly one
image for any di�erential form dxi. If this test is successful, the procedure
derivationFromList creates an object phi of type derivation, sorts L with
respect to the monomial ordering on Omega_R and stores L in the attribute
of phi.

To print derivations in a particular nice way, we provide the procedure
derivationToString that performs a type cast from derivation to string.
Since derivations contain di�erential forms, we make use of the procedure
difformToString to cast them. To get the direct print, one can also apply
derivationPrint.

There are basic arithmetic operations of derivations available: addition,
subtraction, negation, equality, non-equality, evaluation and multiplication
by polynomials, which models the module structure of the derivation mod-
ule. Except for the evaluation-procedure, the idea is always the same. We
explain it in the case of addition: the procedure derivationAdd takes as
input two derivations ϕ and γ. These carry two lists L and T. The sum ϕ+γ
should map the dxi to ϕ(dxi) + γ(dxi). These images are stored in the lists
L and T and since they are sorted the same way (by the constructor), we can
just do an addition of the polynomials L[i] + T[i] to obtain ϕ(dxi) + γ(dxi).
This is done for any dxi and we get the sum of the two derivations.
As for di�erential forms, shortcuts were added to support an intuitive han-
dling.

The procedure derivationEval evaluates a given derivation ϕ at a homo-
geneous di�erential form of degree 1, an element of Ω1

R/k, call it ω. Therefore,
we �rst have to compute the following representation of ω:

ω =

n∑
i=1

sidxi,

where the si are elements in R. This can be done by using difformCoef.
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Then we know that

ϕ(ω) =

n∑
i=1

siϕ(dxi)

The images of the generators dxi under ϕ are stored in a list L, which we
assigned to ϕ since it is of type derivation. The procedure derivationEval
computes the sum

∑n
i=1 siL[i] which is exactly ϕ(ω).

There is also a shortcut for the evaluation. If phi is of type derivation and
df of type difform, then we may write for the evaluation of phi at df:

phi(df);

C.5 The Lie derivative

In this section we present procedures that can compute the Lie derivative of
a given derivation. In fact, we do this in two steps: �rst, we compute the
contraction of the derivation, then we can easily compute the Lie derivative.

De�nition C.5.1. Let R be as before and ϕ : Ω1
R/k → R a derivation.

a) Consider the map

(Ω1
R/k)

t −→
t−1∧

Ω1
R/k

(ω1, . . . , ωt) 7−→
t∑
i=1

(−1)i+1ϕ(ωi) · ω1 ∧ · · · ∧ ω̂i ∧ · · · ∧ ωt,

where ω̂i denotes that ωi is omitted from the wedge product. This map
is alternating t-linear. Hence, by the universal property of the exterior
power

∧t Ω1
R/k, we obtain an R-linear map:

i(t)ϕ :
t∧

Ω1
R/k −→

t−1∧
Ω1
R/k

ω1 ∧ · · · ∧ ωt 7−→
t∑
i=1

(−1)i+1ϕ(ωi) · ω1 ∧ · · · ∧ ω̂i ∧ · · · ∧ ωt

When we combine all these maps, we obtain a graded R-linear map of
degree −1, iϕ : ΩR/k → ΩR/k.

The map iϕ is called contraction of ϕ. A graded part i(t)ϕ is called
t-th contraction of ϕ.

b) The Lie derivative of ϕ is then de�ned by:

Lϕ = iϕ ◦ d+ d ◦ iϕ,

where d denotes the universal derivation.
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We reduce the computation of the Lie derivative to that of the con-
traction. Note that we computed the universal derivation before, using the
procedure difformDiff.
Since the contraction iϕ is R-linear, we may focus on the application of iϕ
to generators:

Remark C.5.2. Let ϕ : Ω1
R/k → R be a derivation and iϕ its contraction.

If ω ∈ ΩR/k, we can compute a representation:

ω =

n∑
j=0

∑
1≤ν1<···<νj≤n

sν1...νjdxν1 ∧ · · · ∧ dxνj

using difformCoef. Hence, we obtain:

iϕ(ω) =
n∑
j=0

∑
1≤ν1<···<νj≤n

sν1...νj i
(j)
ϕ (dxν1 ∧ · · · ∧ dxνj ) (C.2)

and i(j)ϕ (dxν1∧· · ·∧dxνj ) =
∑j

i=1(−1)i+1ϕ(dxνi) ·dxν1∧· · ·∧ d̂xνi∧· · ·∧dxνj

The remark shows how a procedure that applies i(j)ϕ to a generator of
degree j should look like. Exactly those computations are done by the
procedure difformContractionGen: it takes a derivation ϕ and a gener-
ator g = dxν1 ∧ · · · ∧ dxνj . Then it checks, which degree-1 generators
dxi are part of g and computes ϕ(dxi) by derivationEval. The products
dxν1 ∧ · · · ∧ d̂xνi ∧ · · · ∧ dxνj are computed by difformDivision. We simply
divide the di�erential form dxν1 ∧ · · · ∧ dxνi ∧ · · · ∧ dxνj by dxνi .

The procedure difformContraction takes a derivation ϕ and a di�eren-
tial form ω and computes a representation of ω as in Remark C.5.2. Then
it computes i(j)ϕ (dxν1 ∧ · · · ∧ dxνj ) by using difformContractionGen. It
multiplies by the coe�cients sν1...νj and sums everything up. We obtain a
representation as in (C.2) and hence, the procedure actually computes iϕ(ω).

Computing the Lie derivative is then an application of the procedures
difformContraction and difformDiff: the procedure difformLieDer takes
a derivation phi and a di�erential form df and computes:

difformContraction(phi,difformDiff(df)) +

difformDiff(difformContraction(phi,df))

This corresponds to the de�nition of the Lie derivative and therefore, the
procedure computes Lphi(df). It can be called via the shortcut diff.
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