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Exercise 2.1 (Non-Emptiness of Context-Free Languages)

We consider the following problem:

Non-Emptiness of Context-Free Langauges (CFL Non− Empty)
Input: A context-free grammar G in Chomsky normal form.
Question: Is L(G) non-empty?

Show that CFL Non− Empty is P-complete with respect to logspace-many-one reductions.

Hint: You may reduce from CVP for the hardness.

Exercise 2.2

In this exercise, we want to show the NP-completeness of the following problem:

Triple Path Cover (TPC)
Input: A directed graph G.
Question: Can we cover G with three disjoint paths?

More precise, TPC asks whether there are three paths
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(3)
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without repeating vertices such that each vertex v of G appears as a v
(i)
j in exactly one

of the paths.

Show that TPC is NP-complete. The hardness should be established by a reduction from
the well-known NP-complete problem of finding a Hamiltonian Cycle:

Hamiltonian Cycle (Hamil Cycle)
Input: A directed graph G.
Question: Is there a cycle in G (without repetition) that visits all vertices?



Exercise 2.3 (Safe Petri Nets)
Consider the following definition:

• A Petri Net is a triple N = (P, T,W ), where P = {p1, . . . , p|P |} is a finite set
of places, T is a finite set of transitions and W : (P × T ) ∪ (T × P ) → N is a
weight function.

• A marking of N is a map M ∈ N|P | that maps places to natural numbers.
Intuitively, a marking represents the number of tokens in all places.

• A transition t is enabled in a marking M if M ≥W (−, t), where W (−, t) denotes
the vector (W (p1, t), . . . ,W (p|P |, t)). The vector W (t,−) is defined similarly.

• If t is enabled in M , the transition can be fired: we obtain a new marking M ′ by

subtracting W (−, t) and adding W (t,−). More formally, we write: M
t→M ′ if t is

enabled in M and M ′ = M −W (−, t) +W (t,−).

• If σ = σ1 . . . σ` is a sequence of transitions we also write M
σ→ M ′ if there are

markings M1, . . . ,M`+1 so that M1 = M , M`+1 = M ′ and Mi
σi−→ Mi+1 for

i = 1, . . . , `.

• A marking M ′ is reachable from a marking M if there is a sequence of transitions
σ so that M

σ→M ′.

• The Petri Net N is called safe from marking M if all markings reachable from M
are in {0, 1}|P |.

We are interested in the following problem.

Reachability for safe Petri Nets (Safe Reach)
Input: A Petri Net N , markings M,M ′ such that N is safe from M .
Question: Is M ′ reachable from M?

Show that Safe Reach is PSPACE-complete.

Hint: Do not reduce QBF to Safe Reach. Pick an arbitrary problem in PSPACE, a problem
decided by a polynomial-space-bounded TM and reduce it to Safe Reach. The cells of
the TM’s tape should then be simulated by places, the TM’s transition relation gets
simulated by the PN’s transitions.
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