Exercises to the lecture
 Complexity Theory
 Sheet 3

Prof. Dr. Roland Meyer
M.Sc. Peter Chini

Delivery until 13.11.2017 at 18 h
Exercise 3.1 (Intersection Non-Emptiness of Regular Languages)

Consider the following problem.

```
Intersection Non-Emptiness of Regular Langauges (INE)
Input: \(\quad\) Non-deterministic finite automata \(A_{1}, \ldots, A_{k}\) for a \(k \in \mathbb{N}\).
Question: \(\bigcap_{i=1}^{k} L\left(A_{i}\right) \neq \emptyset\) ?
```

Show that INE is PSPACE-complete.

Hint: For the hardness, reduce from the reachability problem for safe Petri Nets. Note that an execution of a Petri Net is a sequence of firings. Firing a transition just amounts to putting and consuming tokens. Construct automata over the alphabet $\left\{\right.$ put $_{p}$, consume $_{p} \mid p$ a place $\}$ that simulate each place and the transitions of a net.

Exercise 3.2 (Alternation Bounded QBF)

We define the following alternation bounded variants of QBF.

- Σ_{i} QBF $=\left\{\psi \mid \psi=\exists \overline{x_{1}} \forall \overline{x_{2}} \ldots Q_{i} \overline{x_{i}} \varphi\left(\overline{x_{1}}, \ldots, \overline{x_{i}}\right)\right.$ is true $\}$,
- Π_{i} QBF $=\left\{\psi \mid \psi=\forall \overline{x_{1}} \exists \overline{x_{2}} \ldots Q_{i} \overline{x_{i}} \varphi\left(\overline{x_{1}}, \ldots, \overline{x_{i}}\right)\right.$ is true $\}$,
where $\overline{x_{j}}$ denotes a finite sequence of variables and Q_{i} is a quantor. Note that there are at most $i-1$ alternations of quantors.

Prove by induction that $\Sigma_{i} \mathrm{QBF}\left(\Pi_{i} \mathrm{QBF}\right)$ can be decided by an alternating Turing Machine that runs in polynomial time, uses at most $i-1$ alternations between existential and universal states and branches first in an existential (universal) state.

Exercise 3.3 (Shortest Path)

Show that the following problem is in NL.
Shortest Path (SP)
Input: \quad A directed graph $G=(V, E)$ and a $k \in \mathbb{N}$.
Question: Does a shortest path from s to t have length exactly k ?

Delivery until 13.11 .2017 at 18 h into the box next to 343

