Exercises to the lecture

Complexity Theory
Sheet 9
Prof. Dr. Roland Meyer
M.Sc. Peter Chini

Delivery until 15.01.2018 at 18h
Exercise 9.1 (Modeling via Polynomials)

We use the polynomial approach to describe the solutions to the following problem:

```
k-PATH
Input: A directed graph G}=(V,E)\mathrm{ and }k\in\mathbb{N}\mathrm{ .
Parameter: k.
Question: Is there a path of k}\mathrm{ vertices in G?
```

To come up with the right polynomial, we need some preliminaries: A walk is a sequence of k vertices $v_{1}, \ldots, v_{k} \in V$, with potential repetition. A labeling is a bijective function $\ell:[1 . . k] \rightarrow[1 . . k]$. A labeled walk is a pair (W, ℓ), where W is a walk and ℓ is a labeling. Intuitively, every (visit of a) vertex v in W gets a unique label from ℓ.
Our variables are $X=\left\{x_{u, v} \mid(u, v) \in E\right\}$ and $Y=\left\{y_{v, j} \mid v \in V, j \in[1 . . k]\right\}$. Let (W, ℓ) be a labeled walk with $W=v_{1}, \ldots, v_{k}$, then we define the monomial:

$$
\operatorname{mon}_{W, \ell}(X, Y)=\Pi_{i=1}^{k-1} x_{v_{i}, v_{i+1}} \cdot \Pi_{i=1}^{k} y_{v_{i}, \ell(i)}
$$

Note that the monomial models precisely the labeled walk in terms of variables. The instance polynomial is given by the sum of all such monomials:

$$
P(X, Y)=\sum_{\substack{\text { walk } \\ W=v_{1}, \ldots, v_{k}}} \sum_{\ell \text { a labeling }} \operatorname{mon}_{W, \ell}(X, Y) .
$$

We show that $P(X, Y)$ does not vanish modulo 2 if and only if G contains a k-path.
a) We define a function T between labeled walks. Let (W, ℓ) be a labeled walk with $W=v_{1}, \ldots, v_{k}$. If W is not a path then there is a smallest pair of numbers (a, b) such that $a<b$ and $v_{a}=v_{b}$. Define the labeling ℓ^{\prime} as follows:

$$
\ell^{\prime}(x)=\left\{\begin{array}{l}
\ell(b), x=a \\
\ell(a), x=b \\
\ell(x), \text { otherwise }
\end{array}\right.
$$

The function T maps a labeled walk (W, ℓ) to the labeled walk $\left(W, \ell^{\prime}\right)$ if W is not a path. If W is a path, T is the identity map.
Prove that $\operatorname{mon}_{W, \ell}=\operatorname{mon}_{T(W, \ell)}$ for each labeled walk (W, ℓ).
b) Show that $P(X, Y)$ takes the following form modulo 2 :

$$
P(X, Y)=\sum_{\substack{\text { path } \\ W=v_{1}, \ldots, v_{k}}} \sum_{\ell \text { a labeling }} \operatorname{mon}_{W, \ell}(X, Y)
$$

c) Conclude that $P(X, Y)$ does not vanish modulo 2 if and only if G contains a k-path.

Exercise 9.2 (Zeta and Möbius Transform)
Prove the following equivalences:
a) $\zeta=\sigma \mu \sigma$, and
b) $\mu=\sigma \zeta \sigma$.

Hint: Recall that $\sigma \sigma=i d$.
Exercise 9.3 (Cover Product)
Let V be a finite set and $f, g: \mathcal{P}(V) \rightarrow \mathbb{Z}$ functions. We define the cover product of f and g to be the function $f *_{c} g: \mathcal{P}(V) \rightarrow \mathbb{Z}$ with

$$
\left(f *_{c} g\right)(X)=\sum_{\substack{A, B \subseteq X \\ A \cup B=X}} f(A) \cdot g(B)
$$

Show that $\zeta\left(f *_{c} g\right)=(\zeta f) \cdot(\zeta g)$

