WS 2015/2016

18.11.2015

Exercises to the lecture Complexity Theory Sheet 4

Prof. Dr. Roland Meyer M.Sc. Peter Chini

Delivery until 26.11.2015 at 12h

Exercise 4.1 (Immerman and Szelepcsényi)

In the lecture we have shown that \overline{PATH} is in NL. Use this to prove the theorem of Immerman and Szelepcsényi:

For $s : \mathbb{N} \to \mathbb{N}$ with $s(n) \ge \log n$, we have:

 $\mathsf{NSPACE}(s(n)) = \operatorname{co-NSPACE}(s(n)).$

Exercise 4.2 (Universal Turing Machine Part II)

Let t_2 be time constructible and $t_1^2 = o(t_2)$. Show that we have a strict inclusion:

 $\mathsf{DTIME}(t_1(n)) \subsetneq \mathsf{DTIME}(t_2(n)).$

Hint: We have already shown that $DSPACE(s_1) \subseteq DSPACE(s_2)$ is a strict inclusion under suitable assumptions. Recall the proof of this theorem and use the same idea to prove the above result.

Exercise 4.3 (Hierarchies and Padding)

Show the following statements, using the hierarchy and transfer results from the lecture:

- a) $\mathsf{P} \subsetneq \mathsf{EXP},$
- b) $NL \subsetneq PSPACE$,
- c) If NL = P then we also have: PSPACE = EXP.

Delivery until 26.11.2015 at 12h into the box next to 34-401.4