Exercises to the lecture Complexity Theory Sheet 5

Prof. Dr. Roland Meyer M.Sc. Peter Chini

Delivery until 02.12.2015 at 12h

Exercise 5.1 (Reductions)

Let Σ_1 and Σ_2 denote two alphabets and let R be a set of functions from Σ_1^* to Σ_2^* .

- a) Assume that A is a language in Σ_1^* and that $A \leq_m^R \Sigma_2^*$ holds. Show that $A = \Sigma_1^*$.
- b) Let |R| = 1 and assume that we have languages $A, A' \subseteq \Sigma_1^*$ and $B \subseteq \Sigma_2^*$ so that:

 $A \leq_m^R B$ and $A' \leq_m^R B$.

Show that we have A = A'.

Exercise 5.2 (Reductions and hardness)

Let C be a complexity class so that co-C = C and let R be a set of functions. Assume that the language A is C-hard with respect to R-many-one reductions. Show that \overline{A} is also C-hard with respect to R-many-one reductions.

Exercise 5.3 (Completeness in L)

Let Σ be a finite alphabet. Prove the following two statements:

- a) A language A over Σ is in L if and only if $A \leq_m^{log} \{0, 1\}$.
- b) Any language A in L that satisfies $A \neq \emptyset$ and $A \neq \Sigma^*$ is already L-complete with respect to logspace-many-one reductions.

Exercise 5.4 (Acyclic reachability)

Show that we can reduce PATH to ACYCLICPATH with respect to logspace-many-one reductions. Conclude that $\overline{ACYCLICPATH}$ is NL-complete.

Delivery until 02.12.2015 at 12h into the box next to 34-401.4