WS 2015/2016

02.12.2015

Exercises to the lecture Complexity Theory Sheet 6

Prof. Dr. Roland Meyer M.Sc. Peter Chini

Delivery until 09.12.2015 at 12h

Exercise 6.1 (Reducing ACYCLICPATH to 2SAT)

Let G be an acyclic graph and s and t vertices of G. We construct a formula F in CNF as follows: for any edge $x \to y$, we add a clause $(\neg x \lor y)$. Moreover, we add the clauses (s) and $(\neg t)$. Show the following:

F is satisfiable \Leftrightarrow there is no path from s to t in G.

Exercise 6.2 (Counter automata)

Let Σ be a finite alphabet and A an k-counter two-way automaton over Σ .

- a) The counters of A may take values in \mathbb{Z} . Construct an k'-counter two-way automaton A' such that:
 - A' simulates A, and
 - the counters of A' only take values in \mathbb{N} .
- b) Assume that A has linearly bounded semantics and that the counters can only take values in \mathbb{N} . Construct a k'-head two-way finite automaton B that simulates A.

This is implication $(2) \Rightarrow (3)$ of the theorem from the lecture about the equal expressiveness of logspace-bounded Turing machines, k-counter two-way automaton with linearly bounded semantics and k-head two-way finite atuomata.

Exercise 6.3 (Circuit Value Problem)

We have seen in the lecture that CVP is P-complete with respect to logspace-many-one reductions. Evaluating a Boolean formula is in L. Intuitively, one would reduce CVP to the corresponding problem for Boolean formulas as follows: Replace

- $P_k = P_i \lor P_j$ by $P_k \leftrightarrow P_i \lor P_j$,
- $P_k = P_i \wedge P_j$ by $P_k \leftrightarrow P_i \wedge P_j$.

Show that this is **not** a logspace-many-one reduction.

Delivery until 09.12.2015 at 12h into the box next to 34-401.4