WS 2015/2016

20.01.2016

Exercises to the lecture Complexity Theory Sheet 11

Prof. Dr. Roland Meyer	
M.Sc. Peter Chini	Delivery until 27.01.2016 at 12h

Exercise 11.1 (A circuit for finding satisfying assignments)

Assume we have a polynomial size circuit family $(C_n)_{n \in \mathbb{N}}$ that decides *SAT*. More precisely, $(C_n)_{n \in \mathbb{N}}$ solves the following problem:

Input: A formula $\varphi(x_0, \ldots, x_k)$ encoded into input variables. Note: the whole formula is the input of the circuit. The variables x_0, \ldots, x_k are only the variables of φ but these are not the input variables of the circuit.

Output: A variable s so that s = 1 if and only if $\varphi(x_0, \ldots, x_k)$ is in SAT.

Furthermore, assume that we have a polynomial size circuit family $(D_n)_{n \in \mathbb{N}}$ that is able to plug in values into a formula:

Input: A formula $\varphi(x_0, \ldots, x_k)$ encoded into input variables and a variable v_0 . **Output:** The encoding for $\varphi(v_0, x_1 \ldots, x_k)$.

In the proof of Karp and Lipton's theorem we have seen the idea how to turn a circuit for SAT into a circuit that also finds a satisfying assignment for a given formula. Construct a polynomial size circuit family for this:

Input: A formula $\varphi(x_0, \ldots, x_k)$ encoded into input variables. **Output:** The variables *s* and v_0, \ldots, v_k . So that:

- If s = 1, then $\varphi(x_0, \ldots, x_k)$ is in SAT and v_0, \ldots, v_k is a satisfying assignment.
- If s = 0, then $\varphi(x_0, \ldots, x_k)$ is not in SAT and $v_0 = \cdots = v_k = 0$.

Delivery until 27.01.2016 at 12h into the box next to 34-401.4