WS 2015/2016

27.01.2016

Exercises to the lecture Complexity Theory Sheet 12

Prof. Dr. Roland Meyer M.Sc. Peter Chini

Delivery until 03.02.2016 at 12h

Exercise 12.1 (Parametrized SAT)

Consider the following parametrized version of SAT: **Input:** A formula $\varphi(x_1, \ldots, x_k)$ of size n. **Parameter:** $k \in \mathbb{N}$. **Question:** Is there a satisfying assignment for φ ?

Construct a parametrized branching algorithm for the above problem and determine its runtime. Which part of the input makes SAT so expensive ?

Exercise 12.2 (Unions of cliques)

A clique is a graph K = (V, E) such that for all $u, v \in V$ we have: $uv \in E$. Hence, any pair of vertices has a connecting edge. The goal of this exercise is to show that the problem *CLUSTEREDITING* defined below is FPT.

Input: A graph G = (V, E).

Parameter: $k \in \mathbb{N}$.

Question: Is it possible to add or delete at most k edges to turn the graph into a disjoint union of cliques ?

- a) Show that a graph G consists of disjoint cliques if and only if there are no three distinct vertices $u, v, w \in V$ so that $uv, vw \in E$ and $uw \notin E$.
- b) Prove that *CLUSTEREDITING* is FPT. Hint: The criterion of Part a) can be used as a branching rule. So far, we have only considered binary branching trees. To solve the above problem, you may need a tree that has a bigger outdegree.

Exercise 12.3 (Total order construction)

Let T be a finite set and (T, \leq) a partial order. Show that there is a total order (T, \sqsubseteq) extending (T, \leq) . This means: if $a \leq b$ then we also have $a \sqsubseteq b$.

Delivery until 03.02.2016 at 12h into the box next to 34-401.4