Concurrency Theory (SS 2015)

Out: Wed, May 06 Due: Tue, May 12

Exercise Sheet 3

Prof. Roland Meyer, Florian Furbach

Technische Universität Kaiserslautern

Problem 1: Parikh Image

Let $N = (S, T, \mathbb{F}, \mathbb{B})$ be a Petri net with connectivity matrix \mathbb{C} and $M_1, M_2 \in \mathbb{N}^{|S|}$, $\sigma \in T^*$ such that $M_1[\sigma \rangle M_2$. Prove that $M_2 = M_1 + \mathbb{C} \cdot p(\sigma)$, where $p(\bullet)$ is the *Parikh image* function.

Problem 2: Boolean Programming

Consider a simple Boolean program P using the following commands:

- l: z = x and y goto l'
- l: z = x or y goto l'
- $l: z = \operatorname{neg} x \operatorname{goto} l'$
- l: if (x = false) goto l_1 else goto l_2

Give a construction of a Petri net program NP_P that simulates P.

Problem 3: Coverability Reduction

Reduce the coverability problem to the reachability problem.

Problem 4: Connectivity Matrix

Let $N = (S, T, \mathbb{F}, \mathbb{B})$ be a Petri net with connectivity matrix \mathbb{C} and let $M \in \mathbb{N}^{|S|}$. Prove that there is a marking $M_1 \in \mathbb{N}^{|S|}$ with $M_1 + M \in R(M_1)$ if and only if $M = \mathbb{C} \cdot x$ has a solution in $\mathbb{N}^{|T|}$.