Concurrency Theory (SS 2015)

Out: Wed, May 27 Due: Tue, June 2

Exercise Sheet 6

Prof. Meyer, Furbach, D'Osualdo

Technische Universität Kaiserslautern

Problem 1: Petri Nets and wsts

- (a) The transition system of a Petri net $N = (S, T, W, M_0)$ is $TS(N) := (R(N), M_0, \rightarrow)$. A transition $M_1 \rightarrow M_2$ exists if $M_1[t\rangle M_2$ for some $t \in T$. Show that TS(N) is well-structured.
- (b) Consider the following variant of Petri nets. A Petri net with zero-tests is a tuple N = (S, T, W, Z, M₀) where S, T, W and M₀ are defined as in regular Petri nets, and Z ⊆ (S × T). A transition t ∈ T is enabled in M if M ≥ W(-, t) and M(s) = 0 holds for each s such that (s,t) ∈ Z. The transition system of a Petri net with zero-tests N = (S, T, W, Z, M₀) is (R(N), M₀, →) as above.

Argue whether the transition system of a Petri net with zero-tests is a wsts under the order $(\mathbb{N}^{|S|}, \leq)$.

Problem 2: Is any TS well-structured?

- (a) Consider the set $\mathbb{N}_{\omega} = \mathbb{N} \cup \{\omega\}$ and the order \leq_{ω} such that for all $n, n' \in \mathbb{N}$, $n \leq_{\omega} n'$ if $n \leq n'$, and for all $n \in \mathbb{N}_{\omega}$, $n \leq_{\omega} \omega$. Prove that $(\mathbb{N}_{\omega}, \leq_{\omega})$ is a wqo.
- (b) Take an arbitrary (finitely branching) transition system TS = (Γ, γ₀, →). Define ℓ(γ) for γ ∈ Γ to be the length of the longest run γ → γ₁ → ... in TS, or ω if there is an infinite run from γ. Prove that any TS = (Γ, γ₀, →) is well-structured under the order ≼ where γ ≼ γ' if ℓ(γ) ≤_ω ℓ(γ').
- (c) Is \preccurlyeq decidable in general?

Problem 3: Representing Upward/Downward-Closed Sets

Let (A, \leq) be a wqo.

- (a) Let $I \subseteq A$ be an upward closed set. Prove Lemma 6.2 given in class: if Min(I) is the finite set of minimal elements of I, then $I = Min(I)\uparrow$.
- (b) Consider the dual notion of *downward-closed set* D, i.e. for all a ∈ A, and d ∈ D, if a ≤ d then a ∈ D. Given B ⊆ A, we write B↓ = {a ∈ A | a ≤ b, b ∈ B}. How can you finitely represent any downward-closed set B ⊆ A? Hint: consider A \ B.

Problem 4: Termination for wsts

Given a wsts $(\Gamma, \rightarrow, \gamma_0, \leq)$, describe an algorithm to decide if every run from γ_0 is terminating or not. Assume the wsts to be finitely branching, i.e., for every configuration $\gamma_1 \in \Gamma$ there are finitely many $\gamma_2 \in \Gamma$ with $\gamma_1 \rightarrow \gamma_2$. Prove correctness of your algorithm.

Hint: start from the reachability tree for Petri nets and lift the construction for wsts.