Exercise Sheet 6

Prof. Meyer, Furbach, D'Osualdo

Technische Universität Kaiserslautern

Problem 1: Petri Nets and wsts

(a) The transition system of a Petri net $N=\left(S, T, W, M_{0}\right)$ is $T S(N):=\left(R(N), M_{0}, \rightarrow\right)$. A transition $M_{1} \rightarrow M_{2}$ exists if $M_{1}[t\rangle M_{2}$ for some $t \in T$. Show that $T S(N)$ is wellstructured.
(b) Consider the following variant of Petri nets. A Petri net with zero-tests is a tuple $N=$ $\left(S, T, W, Z, M_{0}\right)$ where S, T, W and M_{0} are defined as in regular Petri nets, and $Z \subseteq$ $(S \times T)$. A transition $t \in T$ is enabled in M if $M \geq W(-, t)$ and $M(s)=0$ holds for each s such that $(s, t) \in Z$. The transition system of a Petri net with zero-tests $N=$ $\left(S, T, W, Z, M_{0}\right)$ is $\left(R(N), M_{0}, \rightarrow\right)$ as above.
Argue whether the transition system of a Petri net with zero-tests is a wsts under the order $\left(\mathbb{N}^{|S|}, \leq\right)$.

Problem 2: Is any TS well-structured?

(a) Consider the set $\mathbb{N}_{\omega}=\mathbb{N} \cup\{\omega\}$ and the order \leq_{ω} such that for all $n, n^{\prime} \in \mathbb{N}, n \leq_{\omega} n^{\prime}$ if $n \leq n^{\prime}$, and for all $n \in \mathbb{N}_{\omega}, n \leq_{\omega} \omega$. Prove that $\left(\mathbb{N}_{\omega}, \leq_{\omega}\right)$ is a wqo.
(b) Take an arbitrary (finitely branching) transition system $T S=\left(\Gamma, \gamma_{0}, \rightarrow\right)$. Define $\ell(\gamma)$ for $\gamma \in \Gamma$ to be the length of the longest run $\gamma \rightarrow \gamma_{1} \rightarrow \ldots$ in $T S$, or ω if there is an infinite run from γ. Prove that any $T S=\left(\Gamma, \gamma_{0}, \rightarrow\right)$ is well-structured under the order \preccurlyeq where $\gamma \preccurlyeq \gamma^{\prime}$ if $\ell(\gamma) \leq_{\omega} \ell\left(\gamma^{\prime}\right)$.
(c) Is \preccurlyeq decidable in general?

Problem 3: Representing Upward/Downward-Closed Sets

Let (A, \leq) be a wqo.
(a) Let $I \subseteq A$ be an upward closed set. Prove Lemma 6.2 given in class: if $\operatorname{Min}(I)$ is the finite set of minimal elements of I, then $I=\operatorname{Min}(I) \uparrow$.
(b) Consider the dual notion of downward-closed set D, i.e. for all $a \in A$, and $d \in D$, if $a \leq d$ then $a \in D$. Given $B \subseteq A$, we write $B \downarrow=\{a \in A \mid a \leq b, b \in B\}$. How can you finitely represent any downward-closed set $B \subseteq A$?
Hint: consider $A \backslash B$.

Problem 4: Termination for wsts

Given a wsts $\left(\Gamma, \rightarrow, \gamma_{0}, \leq\right)$, describe an algorithm to decide if every run from γ_{0} is terminating or not. Assume the wsts to be finitely branching, i.e., for every configuration $\gamma_{1} \in \Gamma$ there are finitely many $\gamma_{2} \in \Gamma$ with $\gamma_{1} \rightarrow \gamma_{2}$. Prove correctness of your algorithm.
Hint: start from the reachability tree for Petri nets and lift the construction for wsts.

