Exercise Sheet 10

Zetzsche, Furbach, D'Osualdo
Technische Universität Kaiserslautern

Problem 1: Petri Net Languages

A labelled Petri net is a tuple $N=\left(S, T, W, M_{0}, X, \lambda, F\right)$ where S, T, W and M_{0} are the finite set of places, transitions, the weight function and the initial marking respectively, defined as in ordinary Petri nets. The set X is a finite alphabet and the labelling function $\lambda: T \rightarrow X \cup\{\epsilon\}$ assigns a letter or the empty word to each transition. The set F is a finite set of final markings. We define the language generated by a labelled Petri net N to be the set

$$
\left.\mathcal{L}(N)=\left\{w \in X^{*}\left|\exists t_{1}, \ldots, t_{n} \in T: M_{0}\right| t_{1} \cdots t_{n}\right\rangle M_{n} \in F \wedge w=\lambda\left(t_{1}\right) \lambda\left(t_{2}\right) \cdots \lambda\left(t_{n}\right)\right\} .
$$

Prove that the class of languages generated by labelled Petri nets is a full trio.
[Hint: Show that it is closed under rational transductions.]

Problem 2: Principal Trios

a) Let \mathcal{C} and \mathcal{D} be principal full trios. Show that the following holds: \mathcal{C} and \mathcal{D} are comparable ($\mathcal{C} \subseteq \mathcal{D}$ or $\mathcal{D} \subseteq \mathcal{C}$) if and only if $\mathcal{C} \cup \mathcal{D}$ is principal.
b) Let $\mathcal{C}_{1} \subseteq \mathcal{C}_{2} \subseteq \ldots$ be an infinite sequence of principal full trios. Show that $\bigcup_{i \in \mathbb{N}} \mathcal{C}_{i}$ is principal if and only if there is an $i \in \mathbb{N}$ such that $\mathcal{C}_{j}=\mathcal{C}_{i}$ for all $j \geq i$.

Problem 3: Shuffle vs Intersection

Given two languages L and K over X, we define their shuffle as

$$
L Ш K:=\left\{u_{0} v_{0} \ldots u_{n} v_{n} \mid n \in \mathbb{N}, u_{0}, . ., u_{n}, v_{0}, . ., v_{n} \in X^{*}, u_{0} \ldots u_{n} \in L, v_{0} \ldots v_{n} \in K\right\} .
$$

Let \mathcal{C} be a full trio. Show that \mathcal{C} is closed under \amalg if and only if \mathcal{C} is closed under \cap.

Problem 4: Complement vs Kleene

We define the complement of a language L as $\bar{L}=X^{*} \backslash L$, where X is the smallest alphabet such that $L \subseteq X^{*}$. Let \mathcal{C} be a full trio. Show that if \mathcal{C} is closed under complementation, then \mathcal{C} is closed under Kleene iteration (L^{*}).
[Hint: Try to construct $\overline{(L \#)^{*}}$. What does this language look like?]

Problem 5: Regular Intersection

This is the extra problem, we will correct your submission and discuss it in the tutorial but you don't get a plus.

Let \mathcal{C} be a language class that is closed under homomorphism (α), inverse homomorphism $\left(\alpha^{-1}\right)$ and concatenation with single letters from the left (L is transformed into $c L$) and from the right (L is transformed into $L c$). Show that \mathcal{C} is a full trio.
[Hint: In order to simulate a finite automaton $A=\left(Q, \Delta, q_{0},\left\{q_{f}\right\}\right)$ over the alphabet X with edges $\Delta \subseteq Q \times X \times Q$, we can start by defining an homomorphism $\alpha: \Delta^{*} \rightarrow X^{*}$. From $\alpha^{-1}(L)$ try to construct the language of accepting runs encoded as words $q_{0} x_{1} q_{1} \cdots x_{n} q_{n}$.]

