Concurrency Theory (SS 2015)

Out: Wed, 24 Jun Due: Tue, 30 Jun

Exercise Sheet 10

Zetzsche, Furbach, D'Osualdo

Technische Universität Kaiserslautern

Problem 1: Petri Net Languages

A labelled Petri net is a tuple $N = (S, T, W, M_0, X, \lambda, F)$ where S, T, W and M_0 are the finite set of places, transitions, the weight function and the initial marking respectively, defined as in ordinary Petri nets. The set X is a finite alphabet and the labelling function $\lambda \colon T \to X \cup \{\epsilon\}$ assigns a letter or the empty word to each transition. The set F is a finite set of final markings. We define the language generated by a labelled Petri net N to be the set

 $\mathcal{L}(N) = \{ w \in X^* \mid \exists t_1, \dots, t_n \in T : M_0 \mid t_1 \cdots t_n \rangle M_n \in F \land w = \lambda(t_1)\lambda(t_2) \cdots \lambda(t_n) \}.$

Prove that the class of languages generated by labelled Petri nets is a full trio. [Hint: *Show that it is closed under rational transductions.*]

Problem 2: Principal Trios

- a) Let C and D be principal full trios. Show that the following holds: C and D are comparable ($C \subseteq D$ or $D \subseteq C$) if and only if $C \cup D$ is principal.
- b) Let $C_1 \subseteq C_2 \subseteq \ldots$ be an infinite sequence of principal full trios. Show that $\bigcup_{i \in \mathbb{N}} C_i$ is principal if and only if there is an $i \in \mathbb{N}$ such that $C_j = C_i$ for all $j \ge i$.

Problem 3: Shuffle vs Intersection

Given two languages L and K over X, we define their shuffle as

 $L \sqcup K := \{ u_0 v_0 \dots u_n v_n \mid n \in \mathbb{N}, u_0, \dots, u_n, v_0, \dots, v_n \in X^*, u_0 \dots u_n \in L, v_0 \dots v_n \in K \}.$

Let C be a full trio. Show that C is closed under \sqcup if and only if C is closed under \cap .

Problem 4: Complement vs Kleene

We define the complement of a language L as $\overline{L} = X^* \setminus L$, where X is the smallest alphabet such that $L \subseteq X^*$. Let C be a full trio. Show that if C is closed under complementation, then C is closed under Kleene iteration (L^*).

[Hint: *Try to construct* $(L\#)^*$. *What does this language look like?*]

Problem 5: Regular Intersection

This is the extra problem, we will correct your submission and discuss it in the tutorial but you don't get a plus.

Let C be a language class that is closed under homomorphism (α), inverse homomorphism (α^{-1}) and concatenation with single letters from the left (L is transformed into cL) and from the right (L is transformed into Lc). Show that C is a full trio.

[Hint: In order to simulate a finite automaton $A = (Q, \Delta, q_0, \{q_f\})$ over the alphabet X with edges $\Delta \subseteq Q \times X \times Q$, we can start by defining an homomorphism $\alpha \colon \Delta^* \to X^*$. From $\alpha^{-1}(L)$ try to construct the language of accepting runs encoded as words $q_0x_1q_1\cdots x_nq_n$.]