Exercise Sheet 13

Zetzsche, Furbach, D’Osualdo
Technische Universität Kaiserslautern

Problem 1: Q_{2} and Palindromes

Recall the definition of $Q_{\alpha}:=\left\{w \alpha\left(w^{R}\right) \mid w \in X^{*}\right\}$ for an homomorphism $\alpha: X^{*} \rightarrow Y^{*}$, and $Q_{n}:=\left\{w \gamma_{n}\left(w^{R}\right) \mid w \in X_{n}{ }^{*}\right\}$ where $\gamma_{n}: X_{n}{ }^{*} \rightarrow{\overline{X_{n}}}^{*}$ is the homomorphism with $\gamma_{n}\left(a_{i}\right)=\overline{a_{i}}$.
a) Let \mathcal{C} be a full trio. Show that the following statements are equivalent:

- \mathcal{C} contains Q_{2}.
- \mathcal{C} contains Q_{α} for every homomorphism $\alpha: X^{*} \rightarrow Y^{*}$.
[Hint: Show that if \mathcal{C} contains Q_{2}, then it contains Q_{n} for every $n \in \mathbb{N}$.]
b) Show that \mathcal{C} contains Q_{2} if and only if it contains the set $\left\{w \in\{a, b\}^{*} \mid w=w^{R}\right\}$ of palindromes.

Problem 2: Permutations

a) Show that $\left\{a^{n} b^{n} c^{n} \mid n \in \mathbb{N}\right\}$ is a Petri net language.
b) For a language L we define $\Pi(L):=\left\{w \mid \exists w^{\prime} \in L: w\right.$ is a permutation of $\left.w^{\prime}\right\}$.

Show that if L is a Petri net language, $\Pi(L)$ is a Petri net language as well.
c) Show that if L is a context-free language, $\Pi(L)$ is not necessarily context-free.

Problem 3: Chomsky-Schützenberger and D_{1}^{\prime}

a) Show that the Petri net languages form the smallest full trio that contains D_{1}^{\prime} and is closed under intersection.
b) Deduce from 3a) that not every context-free language can be written as $\beta\left(\alpha^{-1}\left(D_{1}^{\prime}\right) \cap K\right)$ with homomorphisms α, β and regular language K.

Problem 4: Lossy Channel Languages

Recall the definition of a Lossy Channel system from the lecture.
For an LCS $S^{\prime}=\left(Q, q_{0}, C, M, \Delta\right)$ (where $\Delta \subseteq Q \times O P \times Q$ is the finite set of transitions) we define, as we did for Petri Nets, its X-labelled version $S=\left(Q, q_{0}, C, M, \Delta, X, \lambda, F\right)$ by means of a labelling function $\lambda: \Delta \rightarrow X \cup\{\varepsilon\}$ which associates to every transition a label or the empty word, and final states $F \subseteq Q$. We write $\left(q_{1}, W_{1}\right) \rightarrow_{t}\left(q_{2}, W_{2}\right)$ when the transition $t \in \Delta$ generates a transition between two configurations $\left(q_{1}, W_{1}^{\prime}\right) \rightarrow\left(q_{2}, W_{2}^{\prime}\right)$ with $W_{1}^{\prime} \preceq^{*} W_{1}$ and $W_{2} \preceq^{*} W_{2}^{\prime}$. We denote by ε^{C} the function associating to each channel in C the empty word. Then the language generated by S is defined as

$$
\mathcal{L}(S):=\left\{\lambda\left(t_{1}\right) \cdots \lambda\left(t_{n}\right) \mid\left(q_{0}, \varepsilon^{C}\right) \rightarrow_{t_{1}} \cdots \rightarrow_{t_{n}}\left(q_{n}, \varepsilon^{C}\right), q_{n} \in F\right\} .
$$

The LCS languages are precisely those that can be generated by an LCS. Given these definitions, answer the following:
a) Show that LCS languages form a full trio.
b) Show that LCS languages are also closed under intersection and Kleene star.
c) Use the following theorem to deduce that $\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$ is not an LCS language:

Theorem (Hartmanis \& Hopcroft). The class of the recursively enumerable languages is the smallest full trio containing $\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$ that is closed under intersection and Kleene star.

