Concurrency Theory (WS 2010/11)

Out: Wed, Nov 10 Due: Mon, Nov 15

Exercise Sheet 3

Jun.-Prof. Roland Meyer, Georgel Călin

Technische Universität Kaiserslautern

Problem 1: Marking Equation

Let $N = (S, T, \mathbb{F}, \mathbb{B})$ be a Petri net with connectivity matrix \mathbb{C} and $M_1, M_2 \in \mathbb{N}^{||S||}, \sigma \in T^*$ such that $M_1[\sigma \rangle M_2$. Prove that $M_2 = M_1 + \mathbb{C} \cdot p(\sigma)$, where $p(\bullet)$ is the Parikh image function. Hint: $\mathbb{C}(\bullet, t) = \mathbb{C} \cdot E_t$, where E_t is the unit vector having 1 at position t and 0 elsewhere.

Problem 2: S/T-Invariants for Petri Nets

Let N = (S, T, W) be a Petri net.

- (a) prove that if I and J are structural (S-) invariants of N, so are I + J and $k \cdot I$ ($\forall k \in \mathbb{Z}$).
- (b) prove that if I and J are transition (T-) invariants of N, so are I + J and $k \cdot I$ ($\forall k \in \mathbb{N}$).
- (c) compute a basis of S-invariants for the following net:

Problem 3: Traps and Siphons

Determine the traps and siphons in the following net:

Compute the net's trap matrix \mathbb{C}_Q and verify your findings against the trap/siphon equation.

Problem 4: Family of Generating Traps

Add arcs to the Petri net N below so that its family of generating traps contains exponentially (in N's size) many traps. Once added, describe N = (S, T, W) formally and prove that the family of generating traps is exponential in N's size.

Does the generating family of traps for N contain only minimal traps? Argument your answer.