## Exercise Sheet 3

Jun.-Prof. Roland Meyer, Georgel Călin
Technische Universität Kaiserslautern

## Problem 1: Marking Equation

Let $N=(S, T, \mathbb{F}, \mathbb{B})$ be a Petri net with connectivity matrix $\mathbb{C}$ and $M_{1}, M_{2} \in \mathbb{N}^{\|S\|}, \sigma \in T^{*}$ such that $M_{1}[\sigma\rangle M_{2}$. Prove that $M_{2}=M_{1}+\mathbb{C} \cdot p(\sigma)$, where $p(\bullet)$ is the Parikh image function.

Hint: $\mathbb{C}(\bullet, t)=\mathbb{C} \cdot E_{t}$, where $E_{t}$ is the unit vector having 1 at position $t$ and 0 elsewhere.

## Problem 2: S/T-Invariants for Petri Nets

Let $N=(S, T, W)$ be a Petri net.
(a) prove that if $I$ and $J$ are structural (S-) invariants of $N$, so are $I+J$ and $k \cdot I(\forall k \in \mathbb{Z})$.
(b) prove that if $I$ and $J$ are transition (T-) invariants of $N$, so are $I+J$ and $k \cdot I(\forall k \in \mathbb{N})$.
(c) compute a basis of S-invariants for the following net:


## Problem 3: Traps and Siphons

Determine the traps and siphons in the following net:


Compute the net's trap matrix $\mathbb{C}_{Q}$ and verify your findings against the trap/siphon equation.

## Problem 4: Family of Generating Traps

Add arcs to the Petri net $N$ below so that its family of generating traps contains exponentially (in $N$ 's size) many traps. Once added, describe $N=(S, T, W)$ formally and prove that the family of generating traps is exponential in $N$ 's size.


Does the generating family of traps for $N$ contain only minimal traps? Argument your answer.

