Concurrency Theory (WS 2011/12)

Out: Tue, Oct 25 Due: Mon, Oct 31

Exercise Sheet 2

Jun.-Prof. Roland Meyer, Georgel Călin Technische Universität Kaiserslautern

Problem 1: Some Proofs

Let $N = (S, T, W, M_0)$ be a Petri net.

- (a) Prove that R(N) is finite if and only if N is bounded.
- (b) Prove that $\forall \sigma \in T^*$: if $M_1[\sigma \rangle M_2$ then $(M_1 + M)[\sigma \rangle (M_2 + M)$ for any $M \ge 0$.
- (c) Prove that if $M_1[\sigma\rangle M'_1$ and $M_2[\sigma\rangle M'_2$ then $M'_1 M_1 = M'_2 M_2$.

Problem 2: Boundedness – Decision Procedure Example

Use the (depth-first) algorithm from class to decide if the following net is bounded.

Assume the natural ordering of transitions: t_1 , t_2 , t_3 .

Problem 3: Termination – Decision Procedure

Let $N = (S, T, W, M_0)$ be a Petri net.

(a) Prove that N does not terminate iff. there are $M_1, M_2 \in R(N)$ with $M_2 \ge M_1$ such that $M_0[\tau \rangle M_1[\sigma \rangle M_2$ for some $\tau \in T^*$ and $\sigma \in T^+$.

(b) Devise an algorithm for deciding termination of Petri net N based on (a).

Problem 4: Termination – Decision Procedure Example

Use your (depth-first) algorithm from the previous exercise to decide termination for:

