Concurrency Theory (WS 2011/12)

Out: Tue, Nov 1 Due: Mon, Nov 7

Exercise Sheet 3

Jun.-Prof. Roland Meyer, Georgel Călin

Technische Universität Kaiserslautern

Problem 1: Marking Equation

Let $N = (S, T, \mathbb{F}, \mathbb{B})$ be a Petri net with connectivity matrix \mathbb{C} and $M_1, M_2 \in \mathbb{N}^{|S|}, \sigma \in T^*$ such that $M_1[\sigma\rangle M_2$. Prove that $M_2 = M_1 + \mathbb{C} \cdot p(\sigma)$, where $p(\bullet)$ is the Parikh image function. Hint: $\mathbb{C}(\bullet, t) = \mathbb{C} \cdot E_t$, where E_t is the unit vector having 1 at position t and 0 elsewhere.

Problem 2: Place Boundedness via S-Invariants

Let s be a place of the marked net $N = (S, T, W, M_0)$. Prove that if there is a nonegative S-invariant I satisfying $I(s) \ge 1$ then s is bounded by

$$\frac{1}{I(s)}\sum_{s'\in S}I(s')\cdot M_0(s').$$

Problem 3: Lemma on Structural Boundedness

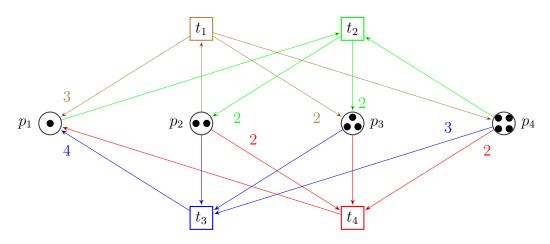
Prove that if the Petri net $N = (S, T, W, M_0)$ is unbounded then $\mathbb{C}x \ge 0$ has a solution in $\mathbb{N}^{|T|}$.

Problem 4: More on S/T-Invariants

Let N = (S, T, W) be a Petri net.

(a) Prove N's transition (T-) invariants form a vector space, i.e., prove that if I and J are T-invariants so are I + J and $k \cdot I$ for $k \in \mathbb{Z}$.

(b) Compute a basis of S-invariants for the net:



Note: the different colors are used only for not mixing the different numerical labels of the arcs.