Concurrency Theory (WS 2011/12)

Out: Tue, Dec 13 Due: Mon, Dec 19

Exercise Sheet 9

Jun.-Prof. Roland Meyer, Georgel Călin

Technische Universität Kaiserslautern

Problem 1: Reachability of Upward-Closed Sets

Consider wsts $(\Gamma, \to, \gamma_0, \leq)$. Let $pre^j(I) := pre(\dots, pre(I) \dots)$ for upward closed set $I \subseteq \Gamma$. (a) Show that $I_j = \bigcup_{l=0}^j pre^l(I)$ with I_j as it has been defined in the lecture.

(b) Prove that I is reachable from γ in $\leq n$ steps if and only if $\gamma \in I_n$.

Problem 2: Downward Closure of Automata Languages

Compute $\mathcal{L}(A) \downarrow$ for the following automata *A*:

Give a general procedure which given an arbitrary automaton A computes $\mathcal{L}(A)\downarrow$.

Problem 3: SRE Inclusion

Use the algorithm given in the lecture to check whether the following SRE inclusions hold:

- (a) $(a+n+s)^*(t+a+n)^* \subseteq (s+a+n+t+a)^*$
- (b) $(r+\epsilon)(p+\epsilon)(n+t)^* \subseteq p^*(r+\epsilon)(s+\epsilon)(n+t)^* + (p+\epsilon)r^*(n+e+t)^*$
- (b) $(r+\epsilon)(p+\epsilon)(n+t)^* \subseteq (p+r+e)^*(s+\epsilon)(n+t)^*$

Problem 4: Coverability for Lossy Channel Systems

Consider the lcs depicted in the figure below.

