Concurrency Theory (WS 2011/12)

Out: Tue, Jan 10 Due: Mon, Jan 16

Exercise Sheet 11

Jun.-Prof. Roland Meyer, Georgel Călin

Technische Universität Kaiserslautern

Problem 1: Reachability of Upward-Closed Sets

Let $(\Gamma, \gamma_0, \rightarrow, \leq)$ be a well-structured transition system and $I \subseteq \Gamma$ an upward-closed set.

(a) Prove that $R(\gamma_0) \cap I = \emptyset$ if and only if $R(\gamma_0) \downarrow \cap I = \emptyset$.

(b) Let $R(\gamma_0) \cap I \neq \emptyset$ in $(\Gamma, \gamma_0, \rightarrow)$. Prove that there exists $\Gamma' \subseteq \Gamma$ finite with $\gamma_0 \in \Gamma'$ such that $R(\gamma_0) \cap I \neq \emptyset$ in $(\Gamma', \gamma_0, \rightarrow \cap (\Gamma' \times \Gamma'))$.

Problem 2: Adequate Domain of Limits for LCSs

(a) Show that symbolic configurations (q, R) with $R: C \to SRE$ are an adl.

(b) Argue why the above adequate domain of limits (adl) is effective for LCSs.

Problem 3: And-Or Graphs and Execution Trees

Give four And-Or graphs with the following properties: the first one has infinitely many execution trees, the second one has more than one but finitely many execution trees, the third has a unique execution tree with infinitely many branches, and the last has a unique execution tree with finitely many branches.

Problem 4: Expand, Enlarge and Check

Consider the lossy channel system LCS:

together with $\Gamma = \{(q_0, \varepsilon), (q_1, \varepsilon), (q_2, \varepsilon)\}$ and limit domains

$$L_{0} = \left\{ \top, \left(q_{0}, \begin{pmatrix} 1^{*} \\ \varepsilon \end{pmatrix}\right), \left(q_{0}, \begin{pmatrix} \varepsilon \\ 1^{*} \end{pmatrix}\right), \left(q_{1}, \begin{pmatrix} (0+1)^{*} \\ 0^{*} \cdot 1^{*} \end{pmatrix}\right), \left(q_{1}, \begin{pmatrix} (0+1)^{*} \\ 1^{*} \cdot 0^{*} \end{pmatrix}\right) \right\}$$
$$L_{1} = L_{0} \cup \left\{ \left(q_{0}, \begin{pmatrix} 1^{*} \\ 1^{*} \end{pmatrix}\right), \left(q_{1}, \begin{pmatrix} 1^{*} \cdot (0+\varepsilon) \\ 1^{*} \end{pmatrix}\right), \left(q_{2}, \begin{pmatrix} \varepsilon \\ 1^{*} \end{pmatrix}\right) \right\}.$$

- (a) Compute $Over(LCS, \Gamma, L_0)$. Provide an execution tree.
- (b) Compute $Over(LCS, \Gamma, L_1)$. Argue why configuration $(q_2, \begin{pmatrix} 1 \\ \varepsilon \end{pmatrix})$ is not coverable.