Concurrency theory

Exercise sheet 2
Roland Meyer, Elisabeth Neumann
Out: November 01
TU Braunschweig
Winter term 2018/19

Submit your solutions until Wednesday, November 07, 12:00 am. You may submit in groups up to three persons.

Exercise 1: Composition of WSTS

Consider two WSTS $T S_{1}=\left(\Gamma_{1}, \rightarrow_{1}, \gamma_{0}, \leqslant_{1}\right)$ and $T S_{2}=\left(\Gamma_{2}, \rightarrow_{2}, \bar{\gamma}_{0}, \leqslant_{2}\right)$. We define their composition to be $T S_{1} \otimes T S_{2}=(\Gamma, \rightarrow, \gamma, \leqslant)$ where

- $\Gamma=\Gamma_{1} \times \Gamma_{2}$
- $(\gamma, \bar{\gamma}) \rightarrow\left(\gamma^{\prime}, \bar{\gamma}^{\prime}\right)$ iff $\gamma \rightarrow_{1} \gamma^{\prime}$ and $\bar{\gamma} \rightarrow_{2} \bar{\gamma}^{\prime}$
- $\gamma=\left(\gamma_{0}, \bar{\gamma}_{0}\right)$
- $(\gamma, \bar{\gamma}) \leqslant\left(\gamma^{\prime}, \bar{\gamma}^{\prime}\right)$ iff $\gamma \leqslant 1 \gamma^{\prime}$ and $\bar{\gamma} \leqslant 2 \bar{\gamma}^{\prime}$

Prove that $T S_{1} \otimes T S_{2}$ is also a WSTS.

Exercise 2: Well quasi orderings

Prove or disprove that $(\operatorname{Bin}, \leqslant)$ is a well-quasi ordering, here Bin represents set of all binary numbers $\operatorname{Bin}=\{0,1\}^{*}$ and \leqslant is the lexicographing ordering with $0 \leqslant 1$.

Exercise 3: Downward closed sets

Prove that for any wqo (A, \leqslant) and for every infinite decreasing sequence $D_{0} \supseteq D_{1} \supseteq D_{2} \supseteq \ldots$ of downward closed sets, there is a $k \in \mathbb{N}$ such that $D_{k}=D_{k+1}$

Exercise 4: WSTS

Given a wsts $\left(\Gamma, \rightarrow, \gamma_{0}, \leqslant\right)$, describe an algorithm to decide if every run from γ_{0} is terminating or not. Assume the wsts to be finitely branching, i.e., for every configuration $\gamma_{1} \in \Gamma$ there are finitely many $\gamma_{2} \in \Gamma$ with $\gamma_{1} \rightarrow \gamma_{2}$. Prove correctness of your algorithm.

