Concurrency theory

Exercise sheet 3
TU Braunschweig
Roland Meyer, Elisabeth Neumann Winter term 2018/19

Out: November 8
Due: November 14
Submit your solutions until Wednesday, November-14, 12:00 am. You may submit in groups up to three persons.

Exercise 1: SRE Inclusion

Use the algorithm given in the lecture to check whether the following SRE inclusions hold:
(a) $(a+n+s)^{*}(t+a+n)^{*} \subseteq(s+a+n+t+a)^{*}$
(b) $(r+\epsilon)(p+\epsilon)(n+t)^{*} \subseteq p^{*}(r+\epsilon)(s+\epsilon)(n+t)^{*}+(p+\epsilon) r^{*}(n+e+t)^{*}$
(b) $(r+\epsilon)(p+\epsilon)(n+t)^{*} \subseteq(p+r+e)^{*}(s+\epsilon)(n+t)^{*}$

Exercise 2: Coverability of lossy channels

Consider the lcs depicted in the figure below.

Determine if configurations $\left(q_{4},\left[\begin{array}{c}N \text { entry } \\ \downarrow \\ 0 \\ \varepsilon\end{array}\right]\right)$ and $\left(q_{4},\left[\begin{array}{l}\varepsilon \\ 1\end{array}\right]\right)$ are coverable using the known procedure.

Exercise 3: Generalised Lossy Channel Systems

Consider the following variation of a lcs: assume one of the symbols $s \in M$ can not be lost during send/receive by any channel but that a channel can contain at most $k \in \mathbb{N}$ symbols s. A transition that wants to send the $k+1$ st symbol s is blocked. Such a generalized lcs can be represented by a standard lcs using as states the Cartesian product $Q \times\{0, \ldots, k\}$ where Q is the set of states of the original system.

The resulting lcs transitions are schematically represented below (for $0 \leqslant i<k$).

You are asked to give an implementation of $\left(q_{1}, i\right) \xrightarrow{c!s}\left(q_{2}, i+1\right)$ by several lossy transitions. Your model should check that precisely i symbols s are present in the channel c before appending the extra s.
[Hint: Take $M \cup \#$ as the alphabet of the resulting lcs]

Exercise 4: Lossychannel with Natural numbers

Consider another type of lcs $L=\left(Q, q_{0},\{c\}, M, \rightarrow\right)$ with c a channel carrying natural numbers as content, i.e., $M=\mathbb{N}$. Take the ordering $\leqslant^{*} \subseteq M^{*} \times M^{*}$ given in Higman's lemma.
(a) Prove that $\left(Q \times M^{*}, \triangleleft\right)$, with \triangleleft defined by $(q, w) \triangleleft\left(q, w^{\prime}\right)$ iff $w \leqslant^{*} w^{\prime}$, is a wqo.
(b) The transitions in L are given by $q \xrightarrow{!n} q^{\prime}$ and $q \xrightarrow{? n} q^{\prime}$ with $n \in \mathbb{N}$. The first appends n to the channel, the second receives a number $n^{\prime} \geqslant n$ with $n^{\prime} \in \mathbb{N}$ from the head of the channel. The channel is supposed to be lossy. Formalise the transition relation between configurations.
(c) Prove that $\left(\left(Q \times M^{*},\left(q_{0}, \epsilon\right), \rightarrow\right), \triangleleft\right)$ is a wsts.

