Concurrency theory Exercise sheet 3

Roland Meyer, Elisabeth Neumann

Due: November 14

Out: November 8

Submit your solutions until Wednesday, November-14, 12:00 am. You may submit in groups up to three persons.

Exercise 1: SRE Inclusion

Use the algorithm given in the lecture to check whether the following SRE inclusions hold:

(a) (a + n + s)*(t + a + n)* ⊆ (s + a + n + t + a)*
(b) (r + ε)(p + ε)(n + t)* ⊆ p*(r + ε)(s + ε)(n + t)* + (p + ε)r*(n + e + t)*
(b) (r + ε)(p + ε)(n + t)* ⊆ (p + r + e)*(s + ε)(n + t)*

Exercise 2: Coverability of lossy channels

Consider the lcs depicted in the figure below.

Exercise 3: Generalised Lossy Channel Systems

Consider the following variation of a lcs: assume one of the symbols $s \in M$ can not be lost during send/receive by any channel but that a channel can contain at most $k \in \mathbb{N}$ symbols s.

A transition that wants to send the k + 1st symbol s is blocked. Such a generalized lcs can be represented by a standard lcs using as states the Cartesian product $Q \times \{0, \ldots, k\}$ where Q is the set of states of the original system.

The resulting lcs transitions are schematically represented below (for $0 \leq i < k$).

You are asked to give an implementation of $(q_1, i) \xrightarrow{c!s} (q_2, i+1)$ by several lossy transitions. Your model should check that precisely *i* symbols *s* are present in the channel *c* before appending the extra *s*. [Hint: Take $M \cup \#$ as the alphabet of the resulting lcs]

Exercise 4: Lossychannel with Natural numbers

Consider another type of lcs $L = (Q, q_0, \{c\}, M, \rightarrow)$ with c a channel carrying natural numbers as content, i.e., $M = \mathbb{N}$. Take the ordering $\leq \leq M^* \times M^*$ given in Higman's lemma.

(a) Prove that $(Q \times M^*, \lhd)$, with \lhd defined by $(q, w) \lhd (q, w')$ iff $w \leqslant^* w'$, is a wqo.

(b) The transitions in L are given by $q \stackrel{!n}{\to} q'$ and $q \stackrel{?n}{\to} q'$ with $n \in \mathbb{N}$. The first appends n to the channel, the second receives a number $n' \ge n$ with $n' \in \mathbb{N}$ from the head of the channel. The channel is supposed to be lossy. Formalise the transition relation between configurations.

(c) Prove that $((Q \times M^*, (q_0, \epsilon), \rightarrow), \triangleleft)$ is a wsts.