Concurrency theory
 Exercise sheet 1

TU Braunschweig
Roland Meyer, Elisabeth Neumann Winter term 2017/18

Out: November 22
Due: November 28
Submit your solutions until Wednesday, November 28 12:00 am. You may submit in groups up to three persons.

Exercise 1: Expand, Enlarge and Check

Consider the following lossy channel system $L C S$:

together with $\Gamma=\left\{\left(q_{0}, \varepsilon\right),\left(q_{1}, \varepsilon\right),\left(q_{2}, \varepsilon\right)\right\}$ and limit domains

$$
\begin{aligned}
& L_{0}=\left\{\top,\left(q_{0},\binom{1^{*}}{\varepsilon}\right),\left(q_{0},\binom{\varepsilon}{1^{*}},\left(q_{1},\binom{(0+1)^{*}}{0^{*} .1^{*}}\right),\left(q_{1},\binom{(0+1)^{*}}{1^{*} .0^{*}}\right)\right\}\right. \\
& L_{1}=L_{0} \cup\left\{\left(q_{0},\binom{1^{*}}{1^{*}}\right),\left(q_{1},\binom{1^{*} \cdot(0+\varepsilon)}{1^{*}}\right),\left(q_{2},\binom{\varepsilon}{1^{*}}\right)\right\} .
\end{aligned}
$$

a) Compute $\operatorname{Over}\left(L C S, \Gamma, L_{0}\right)$. Provide an execution tree.
b) Compute $\operatorname{Over}\left(L C S, \Gamma, L_{1}\right)$. Argue why configuration $\left(q_{2},\binom{1}{\varepsilon}\right.$) is not coverable.

Exercise 2: Traffic lights and Petri nets

Consider the Petri net given by the following graphic representation.

a) Write down the net as a tuple $N=(P, T, i, o)$.
b) The net should model a traffic light, but it contains a bug and exhibits unwanted behavior. Show a valid firing sequence (from the initial marking indicated in the graphic representation) reaching a bad marking.

Modify the net to fix the problem. The resulting net should be 1-safe.
c) Model two traffic lights handling a road crossing by using two such Petri nets.

Exercise 3: The Ackermann function

a) The three-argument Ackermann function φ is defined recursively as follows.

$$
\begin{array}{lll}
\varphi: \mathbb{N}^{3} \rightarrow \mathbb{N} & & \\
\varphi(m, n, 0) & =m+n & \\
\varphi(m, 0,1) & =0 & \\
\varphi(m, 0,2) & =1 & \text { for } x>2 \\
\varphi(m, 0, x) & =m & \text { for } n>0 \text { and } x>0
\end{array}
$$

Formally prove the following equalities (e.g. using induction):

$$
\varphi(m, n, 0)=m+n, \quad \varphi(m, n, 1)=m \cdot n, \quad \varphi(m, n, 2)=m^{n}
$$

b) Nowadays, one usually considers the following two-parameter variant.

$$
\begin{array}{rlrl}
A: \mathbb{N}^{2} \rightarrow \mathbb{N} & & \\
A(0, n) & =n+1 & & \\
A(m, 0) & =A(m-1,1) & & \text { for } m>0 \\
A(m, n) & =A(m-1, A(m, n-1)) & & \text { for } m>0 \text { and } n>0
\end{array}
$$

For example, we have

$$
A(1,2)=A(0, A(1,1))=A(0, A(0, A(1,0)))=A(0, A(0, A(0,1)))=A(0, A(0,2))=A(0,3)=4
$$

Similar to this computation, write down a full evaluation of $A(2,3)$.

