Concurrency theory Exercise sheet 9

Roland Meyer, Elisabeth Neumann

Due: January 23

Out: January 18

Submit your solutions until Wednesday, January 23, 12:00 am. You may submit in groups up to three persons.

Exercise 1: Trace robustness strictly implies reachability robustness

Prove the following Lemma from the lecture.

a) If $\operatorname{Tr}_{\operatorname{TSO}}(P) = \operatorname{Tr}_{\operatorname{SC}}(P)$ for some program, then $\operatorname{Reach}_{\operatorname{TSO}}(P) = \operatorname{Reach}_{\operatorname{SC}}(P)$.

Here, $\operatorname{Reach}_{\operatorname{TSO}}(P) = \{pc \mid cf_0 \to^*_{\operatorname{TSO}} (pc, val, buf) \text{ with } buf(i) = \varepsilon \text{ for all } i\}$ and $\operatorname{Reach}_{\operatorname{SC}}(P)$ is obtained by restricting the definition to computations in which each issue (STORE) is followed by the store (UPDATE).

b) The reverse implication does not hold.

Remark: Relations

Recall the following basic definitions for **relations**.

Let N be a set and let $\leq \subseteq N \times N$ be a relation.

Recall that N is **reflexive** if $x \leq x$ for all $x \in N$. It is **antisymmetric** if $x \leq y$ and $y \leq x$ imply x = y (for all $x, y \in N$). It is **transitive** if $x \leq y$ and $y \leq z$ imply $x \leq z$ (for all $x, y, z \in N$). If all three properties hold, we call \leq a **partial order**.

A partial order is called **total** (or linear) if any two elements are comparable, i.e. $\forall x, y \in N : x \leq y$ or $y \leq x$.

We let \leq^* denote the reflexive-transitive closure of \leq , the smallest subset of $N \times N$ that contains \leq and is reflexive and transitive.

We may see (N, \leq) as a directed graph. We call \leq **acyclic** if this graph does not contain a non-trivial cycle $x_0 \leq x_1 \leq \ldots \leq x_m \leq x_0$. (Cycles of the shape $x_0 \leq x_0$ are trivial.)

Exercise 2: Relations

Let N be a **finite** set and let $\leq \subseteq N \times N$ be a relation.

- a) Explain how to construct \leq^* from \leq within a finite number of steps.
- b) Prove that \leq^* is a partial order (i.e. antisymmetric) if and only if \leq is acyclic.
- c) Now assume that \leq_{po} is some partial order. Prove that there is a total order $\leq_{to} \subseteq N \times N$ containing \leq_{po} , i.e. $\leq_{po} \subseteq \leq_{to}$.

Exercise 3: Shasha and Snir

Prove the Lemma by Shasha and Snir:

A trace $\operatorname{Tr}(\tau) \in \operatorname{Tr}_{\operatorname{TSO}}(P)$ is in $\operatorname{Tr}_{\operatorname{SC}}(P)$ if and only if its happens-before relation $\rightarrow_{\operatorname{hb}}$ is acyclic.

Proceed as follows:

- a) Show that for traces of SC computations, \rightarrow_{hb} is necessarily acyclic.
- b) Show how from a trace with acyclic \rightarrow_{hb} , one can construct an SC computation τ' with $Tr(\tau') = Tr(\tau)$.

Hint: Use Exercise 2.