| Concurrency theory |  |
| ---: | ---: |
| Exercise sheet 9 | TU Braunschweig |
| Roland Meyer, Elisabeth Neumann | Winter term 2018/19 |

Out: January 18
Due: January 23
Submit your solutions until Wednesday, January 23, 12:00 am. You may submit in groups up to three persons.

## Exercise 1: Trace robustness strictly implies reachability robustness

Prove the following Lemma from the lecture.
a) If $\operatorname{Tr}_{\mathrm{TSO}}(P)=\operatorname{Tr}_{\mathrm{SC}}(P)$ for some program, then $\operatorname{Reach}_{\mathrm{TSO}}(P)=\operatorname{Reach}_{\mathrm{SC}}(P)$.

Here, $\operatorname{Reach}_{\mathrm{TSO}}(P)=\left\{p c \mid c f_{0} \rightarrow_{\mathrm{TSO}}^{*}(p c, v a l, b u f)\right.$ with buf $(i)=\varepsilon$ for all $\left.i\right\}$ and $\operatorname{Reach}_{\mathrm{SC}}(P)$ is obtained by restricting the definition to computations in which each issue (STORE) is followed by the store (UPDATE).
b) The reverse implication does not hold.

## Remark: Relations

Recall the following basic definitions for relations.
Let $N$ be a set and let $\leqslant \subseteq N \times N$ be a relation.
Recall that $N$ is reflexive if $x \leqslant x$ for all $x \in N$. It is antisymmetric if $x \leqslant y$ and $y \leqslant x$ imply $x=y$ (for all $x, y \in N$ ). It is transitive if $x \leqslant y$ and $y \leqslant z$ imply $x \leqslant z$ (for all $x, y, z \in N)$. If all three properties hold, we call $\leqslant$ a partial order.

A partial order is called total (or linear) if any two elements are comparable, i.e.
$\forall x, y \in N: x \leqslant y$ or $y \leqslant x$.
We let $\leqslant^{*}$ denote the reflexive-transitive closure of $\leqslant$, the smallest subset of $N \times N$ that contains $\leqslant$ and is reflexive and transitive.

We may see $(N, \leqslant)$ as a directed graph. We call $\leqslant$ acyclic if this graph does not contain a non-trivial cycle $x_{0} \leqslant x_{1} \leqslant \ldots \leqslant x_{m} \leqslant x_{0}$. (Cycles of the shape $x_{0} \leqslant x_{0}$ are trivial.)

## Exercise 2: Relations

Let $N$ be a finite set and let $\leqslant \subseteq N \times N$ be a relation.
a) Explain how to construct $\leqslant^{*}$ from $\leqslant$ within a finite number of steps.
b) Prove that $\leqslant^{*}$ is a partial order (i.e. antisymmetric) if and only if $\leqslant$ is acyclic.
c) Now assume that $\leqslant_{p o}$ is some partial order. Prove that there is a total order $\leqslant_{t o} \subseteq N \times N$ containing $\leqslant_{p o}$, i.e. $\leqslant_{p o} \subseteq \leqslant_{t o}$.

## Exercise 3: Shasha and Snir

Prove the Lemma by Shasha and Snir:
A trace $\operatorname{Tr}(\tau) \in \operatorname{Tr}_{\mathrm{TSO}}(P)$ is in $\operatorname{Tr}_{\mathrm{SC}}(P)$ if and only if its happens-before relation $\rightarrow_{\mathrm{hb}}$ is acyclic.

Proceed as follows:
a) Show that for traces of SC computations, $\rightarrow_{\mathrm{hb}}$ is necessarily acyclic.
b) Show how from a trace with acyclic $\rightarrow_{\mathrm{hb}}$, one can construct an SC computation $\tau^{\prime}$ with $\operatorname{Tr}\left(\tau^{\prime}\right)=\operatorname{Tr}(\tau)$.

Hint: Use Exercise 2.

